Baranek GT, David FJ, Poe MD, Stone WL. Sensory experiences questionnaire: discriminating sensory features in young children with autism developmental delays and typical development: SEQ. J Child Psychol Psychiatry. 2018;47:591–601. https://doi.org/10.1111/j.1469-7610.2005.01546.x.
Article
Google Scholar
Green SA, Hernandez L, Tottenham N, Krasileva K, Bookheimer SY, Dapretto M. Neurobiology of sensory overresponsivity in youth with autism spectrum disorders. JAMA Psychiat. 2015;72:778. https://doi.org/10.1001/jamapsychiatry.2015.0737.
Article
Google Scholar
Ahn RR, Miller LJ, Milberger S, McIntosh DN. Prevalence of parents’ perceptions of sensory processing disorders among kindergarten children. Am J Occup Ther. 2004;58:287–93. https://doi.org/10.5014/ajot.58.3.287.
Article
Google Scholar
Ben-Sasson A, Carter AS, Briggs-Gowan MJ. Sensory over-responsivity in elementary school: prevalence and social-emotional correlates. J Abnormal Child Psychol. 2009;37:705–16. https://doi.org/10.1007/s10802-008-9295-8.
Article
CAS
Google Scholar
Tomchek SD, Dunn W. Sensory processing in children with and without autism: a comparative study using the short sensory profile. Am J Occupat Ther [Internet]. 2007;61:190–200. https://doi.org/10.5014/ajot.61.2.190.
Article
Google Scholar
Bottema-Beutel K, Kapp SK, Lester JN, Sasson NJ, Hand BN. Avoiding ableist language: suggestions for autism researchers. Autism in Adulthood. 2020. https://doi.org/10.1089/aut.2020.0014.
Article
Google Scholar
Kenny L, Hattersley C, Molins B, Buckley C, Povey C, Pellicano E. Which terms should be used to describe autism? Perspectives from the UK autism community. Autism [Internet]. 2016;20:442–62. https://doi.org/10.1177/1362361315588200.
Article
Google Scholar
Surgent OJ, Walczak M, Zarzycki O, Ausderau K, Travers BG. IQ and sensory symptom severity best predict motor ability in children with and without autism spectrum disorder. J Autism Dev Disord [Internet] 2020; https://doi.org/10.1007/s10803-020-04536-x
Baranek GT, Carlson M, Sideris J, Kirby AV, Watson LR, Williams KL, et al. Longitudinal assessment of stability of sensory features in children with autism spectrum disorder or other developmental disabilities: stability of sensory features in ASD. Autism Res. 2019;12:100–11.
Article
Google Scholar
Robertson AE, Simmons DR. The relationship between sensory sensitivity and autistic traits in the general population. J Autism Develop Dis. 2013;43:775–84. https://doi.org/10.1007/s10803-012-1608-7.
Article
Google Scholar
Green SA, Ben-Sasson A, Soto TW, Carter AS. Anxiety and sensory over-responsivity in toddlers with autism spectrum disorders: bidirectional effects across time. J Autism Dev Disord [Internet]. 2012;42:1112–9. https://doi.org/10.1007/s10803-011-1361-3.
Article
Google Scholar
Carpenter KLH, Baranek GT, Copeland WE, Compton S, Zucker N, Dawson G, et al. Sensory over-responsivity: an early risk factor for anxiety and behavioral challenges in young children. J Abnorm Child Psychol [Internet]. 2019;47:1075–88. https://doi.org/10.1007/s10802-018-0502-y.
Article
Google Scholar
Jasmin E, Couture M, McKinley P, Reid G, Fombonne E, Gisel E. Sensori-motor and daily living skills of preschool children with autism spectrum disorders. J Autism Develop Dis [Internet]. 2009;39:231–41. https://doi.org/10.1007/s10803-008-0617-z.
Article
Google Scholar
Ismael N, Lawson LM, Hartwell J. Relationship between sensory processing and participation in daily occupations for children with autism spectrum disorder: a systematic review of studies that used dunn’s sensory processing framework. Am J Occup Ther [Internet]. 2018;72:720. https://doi.org/10.5014/ajot.2018.024075.
Article
Google Scholar
Dellapiazza F, Michelon C, Oreve M-J, Robel L, Schoenberger M, Chatel C, et al. The impact of atypical sensory processing on adaptive functioning and maladaptive behaviors in autism spectrum disorder during childhood: results from the ELENA cohort. J Autism Dev Disord. 2020;50:2142–52.
Article
Google Scholar
Uljarević M, Baranek G, Vivanti G, Hedley D, Hudry K, Lane A. Heterogeneity of sensory features in autism spectrum disorder: challenges and perspectives for future research: sensory features in autism. Autism Res [Internet]. 2017;10:703–10.
Article
Google Scholar
Ángeles Fernández-Gil M, Palacios-Bote R, Leo-Barahona M, Mora-Encinas JP. Anatomy of the brainstem: A gaze into the stem of life. seminars in ultrasound, CT and MRI [Internet]. 2010 [cited 2021 Feb 24];31:196–219. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0887217110000260
Burstein O, Geva R. The brainstem-informed autism framework: early life neurobehavioral markers. Front Integr Neurosci [Internet]. 2021;15:759614. https://doi.org/10.3389/fnint.2021.759614/full.
Article
Google Scholar
Dadalko OI, Travers BG. Evidence for brainstem contributions to autism spectrum disorders. Front Integr Neurosci. 2018;12:47. https://doi.org/10.3389/fnint.2018.00047/full.
Article
Google Scholar
Jonathan Delafield‐Butt, Colwyn Trevarthen. On the brainstem origin of autism: disruption to movements of the primary self. Autism: the movement-sensing perspective. CRC Press/Routledge/Taylor & Francis Group; p. 119–37.
Gilland E, Baker R. Evolutionary patterns of cranial nerve efferent nuclei in vertebrates. Brain Behav Evol. 2005;66:234–54.
Article
Google Scholar
Ghazni NF, Cahill CM, Stroman PW. Tactile Sensory and pain networks in the human spinal cord and brain stem mapped by means of functional MR imaging. AJNR Am J Neuroradiol [Internet]. 2010;31:661–7. https://doi.org/10.3174/ajnr.A1909.
Article
CAS
Google Scholar
Pierrot-Deseilligny C, Tilikete C. New insights into the upward vestibulo-oculomotor pathways in the human brainstem. Progress in Brain Research [Internet]. Elsevier; 2008. p. 509–18. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0079612308006730
Párraga RG, Possatti LL, Alves RV, Ribas GC, Türe U, de Oliveira E. Microsurgical anatomy and internal architecture of the brainstem in 3D images: surgical considerations. JNS [Internet]. 2016;124:1377–95.
Article
Google Scholar
Bickford ME Thalamic circuit diversity: modulation of the driver/modulator framework. Front Neural Circuits [Internet] 2016;https://doi.org/10.3389/fncir.2015.00086
Kobayashi Y, Isa T. Sensory-motor gating and cognitive control by the brainstem cholinergic system. Neural Net. 2002;15:731–41.
Article
Google Scholar
McFadyen J, Dolan RJ, Garrido MI. The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nat Rev Neurosci [Internet]. 2020;21:264–76.
Article
CAS
Google Scholar
Basura GJ, Koehler SD, Shore SE. Multi-sensory integration in brainstem and auditory cortex. Brain Res [Internet]. 2012;1485:95–107.
Article
CAS
Google Scholar
Weldon DA, Best PJ. Changes in sensory responsivity in deep layer neurons of the superior colliculus of behaving rats. Behav Brain Res [Internet]. 1992;47:97–101.
Article
CAS
Google Scholar
Ganmor E, Katz Y, Lampl I. Intensity-dependent adaptation of cortical and thalamic neurons is controlled by brainstem circuits of the sensory pathway. Neuron [Internet]. 2010;66:273–86.
Article
CAS
Google Scholar
Jou RJ, Frazier TW, Keshavan MS, Minshew NJ, Hardan AY. A two-year longitudinal pilot MRI study of the brainstem in autism. Behav Brain Res [Internet]. 2013;251:163–7.
Article
Google Scholar
Cauzzo S, Singh K, Stauder M, García-Gomar MG, Vanello N, Passino C, et al. Functional connectome of brainstem nuclei involved in autonomic, limbic, pain and sensory processing in living humans from 7 Tesla resting state fMRI. NeuroImage [Internet]. 2022;118925.
Narayan A, Rowe MA, Palacios EM, Wren-Jarvis J, Bourla I, Gerdes M, et al. Altered cerebellar white matter in sensory processing dysfunction is associated with impaired multisensory integration and attention. Front Psychol. 2020;11: 618436.
Article
Google Scholar
Chang Y-S, Gratiot M, Owen JP, Brandes-Aitken A, Desai SS, Hill SS, et al. White matter microstructure is associated with auditory and tactile processing in children with and without sensory processing disorder. Front Neuroanat [Internet]. 2016;https://doi.org/10.3389/fnana.2015.00169/abstract
Owen JP, Marco EJ, Desai S, Fourie E, Harris J, Hill SS, et al. Abnormal white matter microstructure in children with sensory processing disorders. NeuroImage: Clinical [Internet]. 2013;2:844–53.
Tavassoli T, Brandes-Aitken A, Chu R, Porter L, Schoen S, Miller LJ, et al. Sensory over-responsivity: parent report, direct assessment measures, and neural architecture. Molecul Autism [Internet]. 2019;10:4. https://doi.org/10.1186/s13229-019-0255-7.
Article
Google Scholar
Brandes-Aitken A, Anguera JA, Chang Y-S, Demopoulos C, Owen JP, Gazzaley A, et al. White matter microstructure associations of cognitive and visuomotor control in children: a sensory processing perspective. Front Integr Neurosci [Internet]. 2019;12:65. https://doi.org/10.3389/fnint.2018.00065/full.
Article
Google Scholar
Shiotsu D, Jung M, Habata K, Kamiya T, Omori IM, Okazawa H, et al. Elucidation of the relationship between sensory processing and white matter using diffusion tensor imaging tractography in young adults. Sci Rep [Internet]. 2021;11:12088.
Article
CAS
Google Scholar
Ohta H, Aoki YY, Itahashi T, Kanai C, Fujino J, Nakamura M, et al. White matter alterations in autism spectrum disorder and attention-deficit/hyperactivity disorder in relation to sensory profile. Molecul Autism [Internet]. 2020;11:77. https://doi.org/10.1186/s13229-020-00379-6.
Article
CAS
Google Scholar
Courchesne E. Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol. 1997;7:269–78.
Article
CAS
Google Scholar
Rimland B. Infantile autism: The syndrome and its implications for a neural theory of behavior. East Norwalk, CT, US: Appleton-Century-Crofts; 1964. p. x, 282.
Wolff JJ, Swanson MR, Elison JT, Gerig G, Pruett JR, Styner MA, et al. Neural circuitry at age 6 months associated with later repetitive behavior and sensory responsiveness in autism. Molecul Autism [Internet]. 2017;8:8. https://doi.org/10.1186/s13229-017-0126-z.
Article
Google Scholar
Acevedo B, Aron E, Pospos S, Jessen D. The functional highly sensitive brain: a review of the brain circuits underlying sensory processing sensitivity and seemingly related disorders. Philosoph Trans Royal Soc B: Biol Sci [Internet]. 2018;373:20170161. https://doi.org/10.1098/rstb.2017.0161.
Article
Google Scholar
Baranek GT, Watson LR, Boyd BA, Poe MD, David FJ, McGuire L. Hyporesponsiveness to social and nonsocial sensory stimuli in children with autism, children with developmental delays, and typically developing children. Dev Psychopathol [Internet]. 2013;25:307–20.
Article
Google Scholar
Schoen SA. Physiological and behavioral differences in sensory processing: a comparison of children with autism spectrum disorder and sensory processing disorder. Front Integr Neurosci [Internet]. 2009;https://doi.org/10.3389/neuro.07.029.2009/abstract
Hannant P, Cassidy S, Van de Weyer R, Mooncey S. Sensory and motor differences in autism spectrum conditions and developmental coordination disorder in children: a cross-syndrome study. Human Move Sci [Internet]. 2018;58:108–18.
Article
Google Scholar
Crasta JE, Salzinger E, Lin M-H, Gavin WJ, Davies PL. Sensory processing and attention profiles among children with sensory processing disorders and autism spectrum disorders. Front Integr Neurosci. 2020;14:22. https://doi.org/10.3389/fnint.2020.00022/full.
Article
Google Scholar
Simon DM, Damiano CR, Woynaroski TG, Ibañez LV, Murias M, Stone WL, et al. Neural correlates of sensory hyporesponsiveness in toddlers at high risk for autism spectrum disorder. J Autism Develop Dis [Internet]. 2017;47:2710–22. https://doi.org/10.1007/s10803-017-3191-4.
Article
Google Scholar
Guerrero-Gonzalez J, Surgent O, Adluru N, Kirk GR, Dean DC III, Kecskemeti SR, et al. Improving imaging of the brainstem and cerebellum in autistic children: transformation-based high-resolution diffusion MRI (TiDi-Fused) in the human brainstem. Front Integr Neurosci [Internet]. 2022;16:804743. https://doi.org/10.3389/fnint.2022.804743/full.
Article
Google Scholar
ten Donkelaar HJ, Cruysberg JRM, Pennings R, Lammens M. Development and Developmental Disorders of the Brain Stem. Clinical Neuroembryology [Internet] 2014; https://doi.org/10.1007/978-3-642-54687-7_7
Graven SN. Early neurosensory visual development of the fetus and newborn. Clinics Perinatol. 2004;31:199–216.
Article
Google Scholar
Hoy AR, Koay CG, Kecskemeti SR, Alexander AL. Optimization of a free water elimination two-compartment model for diffusion tensor imaging. NeuroImage [Internet]. 2014;103:323–33.
Article
Google Scholar
Planetta PJ, Ofori E, Pasternak O, Burciu RG, Shukla P, DeSimone JC, et al. Free-water imaging in Parkinson’s disease and atypical parkinsonism. Brain [Internet]. 2016;139:495–508. https://doi.org/10.1093/brain/awv361.
Article
Google Scholar
Wechsler D, Hsiao-pin C. Wechsler abbreviated scale of intelligence. San Antonio, TX: Pearson; 2011.
Kaufman AS, Kaufman NL. Kaufman brief intelligence test KBIT 2 ; manual. 2004.
Lord C, Rutter M, Risi S, Gotham K, Bishop S. Autism diagnostic observation schedule–2nd edition (ADOS-2). Los Angeles, CA: Western Psychological Corporation; 2012.
Google Scholar
Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Develop Dis [Internet]. 1994;24:659–85. https://doi.org/10.1007/BF02172145.
Article
CAS
Google Scholar
Constantino J, Gruber C. Social responsiveness scale-second edition (SRS-2). Torrance, CA: Western Psychological Services; 2012.
Rutter M, Bailey AJ, Lord C. The social communication questionnaire: manual. Western Psychol Serv; 2003.
Bastiani M, Cottaar M, Fitzgibbon SP, Suri S, Alfaro-Almagro F, Sotiropoulos SN, et al. Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction. Neuroimage. 2019;184:801–12.
Article
Google Scholar
Baranek GT. Sensory experiences questionnaire version 3.0. Unpublished manuscript. 2009
Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003;20:870–88.
Article
Google Scholar
Kecskemeti S, Samsonov A, Velikina J, Field AS, Turski P, Rowley H, et al. Robust motion correction strategy for structural MRI in unsedated children demonstrated with three-dimensional radial MPnRAGE. Radiology. 2018;289:509–16.
Article
Google Scholar
Kecskemeti S, Freeman A, Travers BG, Alexander AL. FreeSurfer based cortical mapping and T1-relaxometry with MPnRAGE: test-retest reliability with and without retrospective motion correction. Neuroimage. 2021;242:118447.
Article
Google Scholar
Veraart J, Fieremans E, Novikov DS. Diffusion MRI noise mapping using random matrix theory: diffusion MRI noise mapping. Magn Reson Med [Internet]. 2016;76:1582–93.
Article
CAS
Google Scholar
Veraart J, Novikov DS, Christiaens D, Ades-aron B, Sijbers J, Fieremans E. Denoising of diffusion MRI using random matrix theory. NeuroImage [Internet]. 2016;142:394–406.
Article
Google Scholar
Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact removal based on local subvoxel-shifts: gibbs-ringing artifact removal. Magn Reson Med [Internet]. 2016;76:1574–81.
Article
Google Scholar
Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–78.
Article
Google Scholar
Andersson JLR, Graham MS, Zsoldos E, Sotiropoulos SN. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuro Image [Internet]. 2016;141:556–72.
Google Scholar
Andersson JLR, Graham MS, Drobnjak I, Zhang H, Filippini N, Bastiani M. Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement. NeuroImage [Internet]. 2017;152:450–66.
Article
Google Scholar
Tournier J-D, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. NeuroImage [Internet]. 2019;202:116137.
Article
Google Scholar
Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29:1310–20.
Article
Google Scholar
Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage [Internet]. 2009;48:63–72.
Article
Google Scholar
Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. NeuroImage [Internet]. 1999;9:179–94.
Article
CAS
Google Scholar
Avants BB, Tustison NJ, Wu J, Cook PA, Gee JC. An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinform. 2011;9:381–400. https://doi.org/10.1007/s12021-011-9109-y.
Article
Google Scholar
Hoy AR, Kecskemeti SR, Alexander AL. Free water elimination diffusion tractography: a comparison with conventional and fluid-attenuated inversion recovery, diffusion tensor imaging acquisitions: FWE-DTI Tractography Comparison. J Magn Reson Imaging. 2015;42:1572–81. https://doi.org/10.1002/jmri.24925.
Article
Google Scholar
Henriques RN, Rokem A, Garyfallidis E, St-Jean S, Peterson ET, Correia MM. [Re] Optimization of a free water elimination two-compartment model for diffusion tensor imaging [Internet]. Neuroscience; 2017; https://doi.org/10.1101/108795
Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage [Internet]. 2016;125:1063–78.
Article
Google Scholar
Cormen TH, Leiserson CE, Rivest RL. Introduction to algorithms. Massachusetts Institute of Technology: MIT Press; 1989.
Google Scholar
Tang Y, Sun W, Toga AW, Ringman JM, Shi Y. A probabilistic atlas of human brainstem pathways based on connectome imaging data. Neuroimage. 2018;169:227–39.
Article
Google Scholar
Wang D, Buckner RL, Liu H. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophys [Internet]. 2013;109:46–57. https://doi.org/10.1152/jn.00598.2012.
Article
CAS
Google Scholar
Cardinale RC, Shih P, Fishman I, Ford LM, Müller R-A. Pervasive rightward asymmetry shifts of functional networks in autism spectrum disorder. JAMA Psychiatry [Internet]. 2013;70:975. https://doi.org/10.1001/jamapsychiatry.2013.382.
Article
Google Scholar
Kavaklioglu T, Guadalupe T, Zwiers M, Marquand AF, Onnink M, Shumskaya E, et al. Structural asymmetries of the human cerebellum in relation to cerebral cortical asymmetries and handedness. Brain Struct Funct [Internet]. 2017;222:1611–23. https://doi.org/10.1007/s00429-016-1295-9.
Article
Google Scholar
Kim S. ppcor: Partial and semi-partial (Part) correlation [Internet]. 2015. Available from: https://CRAN.R-project.org/package=ppcor
Yekutieli D, Benjamini Y. Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. J Stat Plann Inference [Internet]. 1999;82:171–96.
Article
Google Scholar
Chung S, Lu Y, Henry RG. Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. NeuroImage [Internet]. 2006;33:531–41.
Article
Google Scholar
Lee JE, Chung MK, Lazar M, DuBray MB, Kim J, Bigler ED, et al. A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis. Neuroimage. 2009;44:870–83.
Article
Google Scholar
Surgent O, Dean DC, Alexander AL, Dadalko OI, Guerrero-Gonzalez J, Taylor D, et al. Neurobiological and behavioural outcomes of biofeedback-based training in autism: a randomized controlled trial. Brain Commun [Internet]. 2021;https://doi.org/10.1093/braincomms/fcab112/6286947
Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage [Internet]. 2006;31:1487–505.
Article
Google Scholar
Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. NeuroImage [Internet]. 2014;92:381–97.
Article
Google Scholar
Winkler AM, Ridgway GR, Douaud G, Nichols TE, Smith SM. Faster permutation inference in brain imaging. NeuroImage [Internet]. 2016;141:502–16.
Article
Google Scholar
Alberton BAV, Nichols TE, Gamba HR, Winkler AM. Multiple testing correction over contrasts for brain imaging. NeuroImage [Internet]. 2020;216:116760.
Article
Google Scholar
Guerreo-Gonzalez J, Surgent OJ, Adluru N, Kirk G, Dean DC, Kecskemeti SR, et al. Improving imaging of the brainstem and cerebellum in autistic children: Transformation-based high-resolution diffusion MRI (TiDi-Fused) in the human brainstem. Frontiers in Integrative Neuroscience. in presss
Andrews DS, Lee JK, Harvey DJ, Waizbard-Bartov E, Solomon M, Rogers SJ, et al. A longitudinal study of white matter development in relation to changes in autism severity across early childhood. Biol Psychiatry [Internet]. 2021;89:424–32.
Article
Google Scholar
Tardif CL, Gauthier CJ, Steele CJ, Bazin P-L, Schäfer A, Schaefer A, et al. Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity. NeuroImage [Internet]. 2016;131:55–72.
Article
Google Scholar
Alexander DC, Dyrby TB, Nilsson M, Zhang H. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR Biomed. 2019;32: e3841.
Article
Google Scholar
Deoni SCL. Quantitative relaxometry of the brain. Top Magn Reson Imaging. 2010;21:101–13.
Article
Google Scholar
Raymaker DM, Teo AR, Steckler NA, Lentz B, Scharer M, Delos Santos A, et al. “Having all of your internal resources exhausted beyond measure and being left with no clean-up crew”: defining autistic burnout. Autism Adulthood [Internet]. 2020;2:132–43. https://doi.org/10.1089/aut.2019.0079.
Article
Google Scholar
Gray S, Kirby AV, Graham Holmes L. Autistic narratives of sensory features, sexuality, and relationships. Autism in Adulthood [Internet]. 2021 ;https://doi.org/10.1089/aut.2020.0049
Foss-Feig JH, Heacock JL, Cascio CJ. Tactile responsiveness patterns and their association with core features in autism spectrum disorders. Res Autism Spect Dis [Internet]. 2012;6:337–44.
Article
Google Scholar
Cascio CJ, Moana-Filho EJ, Guest S, Nebel MB, Weisner J, Baranek GT, et al. Perceptual and neural response to affective tactile texture stimulation in adults with autism spectrum disorders: neurobehavioral response to textures in ASD. Autism Res [Internet]. 2012;5:231–44.
Article
Google Scholar
Foss-Feig JH, Heacock JL, Cascio CJ. Tactile responsiveness patterns and their association with core features in autism spectrum disorders. Res Autism Spect Dis [Internet]. 2012;6:337–44.
Article
Google Scholar
Cascio C, McGlone F, Folger S, Tannan V, Baranek G, Pelphrey KA, et al. Tactile perception in adults with autism: a multidimensional psychophysical study. J Autism Dev Disord [Internet]. 2008;38:127–37. https://doi.org/10.1007/s10803-007-0370-8.
Article
Google Scholar
Baranek GT. Autism during infancy: a retrospective video analysis of sensory-motor and social behaviors at 9–12 months of age. J Autism Develop Dis [Internet]. 1999;29:213–24. https://doi.org/10.1023/A:1023080005650.
Article
CAS
Google Scholar
Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol [Internet]. 1996;370:247–61.
Article
CAS
Google Scholar
Kemper TL, Bauman ML. Neuropathology of infantile autism. Mol Psychiatry [Internet]. 2002;7:S12–3.
Article
Google Scholar
Bailey A. A clinicopathological study of autism. Brain [Internet]. 1998;121:889–905. https://doi.org/10.1093/brain/121.5.889.
Article
Google Scholar
Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev [Internet]. 2010;20:327–48. https://doi.org/10.1007/s11065-010-9148-4.
Article
Google Scholar
Rodier PM. Converging evidence for brain stem injury in autism. Dev Psychopathol [Internet]. 2002;14:537–57.
Article
Google Scholar
Inui T, Kumagaya S, Myowa-Yamakoshi M. Neurodevelopmental hypothesis about the etiology of autism spectrum disorders. Front Hum Neurosci [Internet]. 2017;11:354. https://doi.org/10.3389/fnhum.2017.00354/full.
Article
Google Scholar
Ausderau KK, Furlong M, Sideris J, Bulluck J, Little LM, Watson LR, et al. Sensory subtypes in children with autism spectrum disorder: latent profile transition analysis using a national survey of sensory features. J Child Psychol Psychiatr [Internet]. 2014;55:935–44.
Article
Google Scholar