Prevalence of autism spectrum disorders - Autism and Developmental Disabilities Monitoring Network, United States, 2006. MMWR Surveill Summ. 2009, 58: 1-20.
Bill BR, Geschwind DH: Genetic advances in autism: heterogeneity and convergence on shared pathways. Curr Opin Genet Dev. 2009, 19: 271-278. 10.1016/j.gde.2009.04.004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bourgeron T: A synaptic trek to autism. Curr Opin Neurobiol. 2009, 19: 231-234. 10.1016/j.conb.2009.06.003.
Article
CAS
PubMed
Google Scholar
Depienne C, Moreno-De-Luca D, Heron D, Bouteiller D, Gennetier A, Delorme R, Chaste P, Siffroi JP, Chantot-Bastaraud S, Benyahia B: Screening for Genomic Rearrangements and Methylation Abnormalities of the 15q11-q13 Region in Autism Spectrum Disorders. Biol Psychiatry. 2009
Google Scholar
Schroer RJ, Phelan MC, Michaelis RC, Crawford EC, Skinner SA, Cuccaro M, Simensen RJ, Bishop J, Skinner C, Fender D, Stevenson RE: Autism and maternally derived aberrations of chromosome 15q. Am J Med Genet. 1998, 76: 327-336. 10.1002/(SICI)1096-8628(19980401)76:4<327::AID-AJMG8>3.0.CO;2-M.
Article
CAS
PubMed
Google Scholar
Battaglia A: The inv dup (15) or idic (15) syndrome (Tetrasomy 15q). Orphanet J Rare Dis. 2008, 3: 30-10.1186/1750-1172-3-30.
Article
PubMed Central
PubMed
Google Scholar
Cook EH, Lindgren V, Leventhal BL, Courchesne R, Lincoln A, Shulman C, Lord C, Courchesne E: Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet. 1997, 60: 928-934.
PubMed Central
CAS
PubMed
Google Scholar
Battaglia A: The inv dup(15) or idic(15) syndrome: a clinically recognisable neurogenetic disorder. Brain & development. 2005, 27: 365-369. 10.1016/j.braindev.2004.08.006.
Article
Google Scholar
Christian SL, Fantes JA, Mewborn SK, Huang B, Ledbetter DH: Large genomic duplicons map to sites of instability in the Prader-Willi/Angelman syndrome chromosome region (15q11-q13). Hum Mol Genet. 1999, 8: 1025-1037. 10.1093/hmg/8.6.1025.
Article
CAS
PubMed
Google Scholar
Makoff AJ, Flomen RH: Detailed analysis of 15q11-q14 sequence corrects errors and gaps in the public access sequence to fully reveal large segmental duplications at breakpoints for Prader-Willi, Angelman, and inv dup(15) syndromes. Genome Biol. 2007, 8: R114-10.1186/gb-2007-8-6-r114.
Article
PubMed Central
PubMed
Google Scholar
Sutcliffe JS, Nakao M, Christian S, Orstavik KH, Tommerup N, Ledbetter DH, Beaudet AL: Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nat Genet. 1994, 8: 52-58. 10.1038/ng0994-52.
Article
CAS
PubMed
Google Scholar
Wahlstrom J, Steffenburg S, Hellgren L, Gillberg C: Chromosome findings in twins with early-onset autistic disorder. Am J Med Genet. 1989, 32: 19-21. 10.1002/ajmg.1320320105.
Article
CAS
PubMed
Google Scholar
Milner KM, Craig EE, Thompson RJ, Veltman MW, Thomas NS, Roberts S, Bellamy M, Curran SR, Sporikou CM, Bolton PF: Prader-Willi syndrome: intellectual abilities and behavioural features by genetic subtype. J Child Psychol Psychiatry. 2005, 46: 1089-1096. 10.1111/j.1469-7610.2005.01520.x.
Article
PubMed
Google Scholar
Veltman MW, Thompson RJ, Roberts SE, Thomas NS, Whittington J, Bolton PF: Prader-Willi syndrome--a study comparing deletion and uniparental disomy cases with reference to autism spectrum disorders. Eur Child Adolesc Psychiatry. 2004, 13: 42-50. 10.1007/s00787-004-0354-6.
Article
PubMed
Google Scholar
Bolton PF, Dennis NR, Browne CE, Thomas NS, Veltman MW, Thompson RJ, Jacobs P: The phenotypic manifestations of interstitial duplications of proximal 15q with special reference to the autistic spectrum disorders. Am J Med Genet. 2001, 105: 675-685. 10.1002/ajmg.1551.
Article
CAS
PubMed
Google Scholar
Rougeulle C, Glatt H, Lalande M: The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain [letter] [In Process Citation]. Nat Genet. 1997, 17: 14-15. 10.1038/ng0997-14.
Article
CAS
PubMed
Google Scholar
Yamasaki K, Joh K, Ohta T, Masuzaki H, Ishimaru T, Mukai T, Niikawa N, Ogawa M, Wagstaff J, Kishino T: Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Hum Mol Genet. 2003, 12: 837-847. 10.1093/hmg/ddg106.
Article
CAS
PubMed
Google Scholar
Kashiwagi A, Meguro M, Hoshiya H, Haruta M, Ishino F, Shibahara T, Oshimura M: Predominant maternal expression of the mouse Atp10c in hippocampus and olfactory bulb. J Hum Genet. 2003, 48: 194-198. 10.1007/s10038-003-0009-3.
Article
CAS
PubMed
Google Scholar
Meguro M, Kashiwagi A, Mitsuya K, Nakao M, Kondo I, Saitoh S, Oshimura M: A novel maternally expressed gene, ATP10C, encodes a putative aminophospholipid translocase associated with Angelman syndrome. Nat Genet. 2001, 28: 19-20.
CAS
PubMed
Google Scholar
DuBose AJ, Johnstone KA, Smith EY, Hallett RA, Resnick JL: Atp10a, a gene adjacent to the PWS/AS gene cluster, is not imprinted in mouse and is insensitive to the PWS-IC. Neurogenetics. 11: 145-151.
Hogart A, Patzel KA, Lasalle JM: Gender influences monoallelic expression of ATP10A in human brain. Hum Genet. 2008
Google Scholar
Hogart A, Nagarajan RP, Patzel KA, Yasui DH, Lasalle JM: 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Hum Mol Genet. 2007, 16: 691-703.
Article
PubMed Central
CAS
PubMed
Google Scholar
LaSalle J, Lalande M: Homologous association of oppositely imprinted chromosomal domains. Science. 1996, 272: 725-728. 10.1126/science.272.5262.725.
Article
CAS
PubMed
Google Scholar
Meguro-Horike M, Yasui DH, Powell W, Schroeder DI, Oshimura M, Lasalle JM, Horike SI: Neuron-specific impairment of inter-chromosomal pairing and transcription in a novel model of human 15q-duplication syndrome. Hum Mol Genet. 2011
Google Scholar
Thatcher K, Peddada S, Yasui D, LaSalle JM: Homologous pairing of 15q11-13 imprinted domains in brain is developmentally regulated but deficient in Rett and autism samples. Hum Mol Genet. 2005, 14: 785-797. 10.1093/hmg/ddi073.
Article
CAS
PubMed
Google Scholar
Hogart A, Leung KN, Wang NJ, Wu DJ, Driscoll J, Vallero RO, Schanen NC, LaSalle JM: Chromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number. J Med Genet. 2009, 46: 86-93.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D: The human genome browser at UCSC. Genome Res. 2002, 12: 996-1006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000, 132: 365-386. Source code available at http://frodo.wi.mit.edu/primer3/
CAS
PubMed
Google Scholar
Bookout AL, Cummins CL, Mangelsdorf DJ, Pesola JM, Kramer MF: High-throughput real-time quantitative reverse transcription PCR. Curr Protoc Mol Biol. 2006, Chapter 15 (Unit 15): 18-
Google Scholar
Urraca N, Davis L, Cook EH, Schanen NC, Reiter LT: A single-tube quantitative high-resolution melting curve method for parent-of-origin determination of 15q duplications. Genet Test Mol Biomarkers. 2010, 14: 571-576. 10.1089/gtmb.2010.0030.
Article
PubMed Central
CAS
PubMed
Google Scholar
Samaco RC, Hogart A, LaSalle JM: Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum Mol Genet. 2005, 14: 483-492.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mann SM, Wang NJ, Liu DH, Wang L, Schultz RA, Dorrani N, Sigman M, Schanen NC: Supernumerary tricentric derivative chromosome 15 in two boys with intractable epilepsy: another mechanism for partial hexasomy. Hum Genet. 2004, 115: 104-111.
Article
CAS
PubMed
Google Scholar
Steffenburg S, Gillberg C, Hellgren L, Andersson L, Gillberg IC, Jakobsson G, Bohman M: A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. J Child Psychol Psychiatry. 1989, 30: 405-416. 10.1111/j.1469-7610.1989.tb00254.x.
Article
CAS
PubMed
Google Scholar
Herzing LBK, Cook EH, Ledbetter DH: Allele-specific expression analysis by RNA-FISH demonstrates preferential maternal expression of UBE3A and imprint maintenance within 15q11-q13 duplications. Hum Mol Genet. 2002, 11: 1707-1718. 10.1093/hmg/11.15.1707.
Article
CAS
PubMed
Google Scholar
Baron CA, Tepper CG, Liu SY, Davis RR, Wang NJ, Schanen NC, Gregg JP: Genomic and functional profiling of duplicated chromosome 15 cell lines reveal regulatory alterations in UBE3A-associated ubiquitin-proteasome pathway processes. Hum Mol Genet. 2006, 15: 853-869. 10.1093/hmg/ddl004.
Article
CAS
PubMed
Google Scholar
Nishimura Y, Martin CL, Vazquez-Lopez A, Spence SJ, Alvarez-Retuerto AI, Sigman M, Steindler C, Pellegrini S, Schanen NC, Warren ST, Geschwind DH: Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum Mol Genet. 2007, 16: 1682-1698. 10.1093/hmg/ddm116.
Article
CAS
PubMed
Google Scholar
Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, Gehrke C: Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 1982, 10: 2709-2721. 10.1093/nar/10.8.2709.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schroeder DI, Lott P, Korf I, Lasalle JM: Large-scale methylation domains mark a functional subset of neuronally expressed genes. Genome Res. 2011
Google Scholar
Kriaucionis S, Heintz N: The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009, 324: 929-930. 10.1126/science.1169786.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009, 324: 930-935. 10.1126/science.1170116.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ruzov A, Tsenkina Y, Serio A, Dudnakova T, Fletcher J, Bai Y, Chebotareva T, Pells S, Hannoun Z, Sullivan G: Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res. 2011
Google Scholar
Guo JU, Su Y, Zhong C, Ming GL, Song H: Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011, 145: 423-434. 10.1016/j.cell.2011.03.022.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W: Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011, 473: 398-402. 10.1038/nature10008.
Article
CAS
PubMed
Google Scholar
Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y: Role of Tet proteins in 5 mC to 5 hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010, 466: 1129-1133. 10.1038/nature09303.
Article
PubMed Central
CAS
PubMed
Google Scholar
Robertson J, Robertson AB, Klungland A: The presence of 5-hydroxymethylcytosine at the gene promoter and not in the gene body negatively regulates gene expression. Biochem Biophys Res Commun. 2011, 411: 40-43. 10.1016/j.bbrc.2011.06.077.
Article
CAS
PubMed
Google Scholar
Ferdousy F, Bodeen W, Summers K, Doherty O, Wright O, Elsisi N, Hilliard G, O'Donnell JM, Reiter LT: Drosophila Ube3a regulates monoamine synthesis by increasing GTP cyclohydrolase I activity via a non-ubiquitin ligase mechanism. Neurobiol Dis. 41: 669-677.
Makedonski K, Abuhatzira L, Kaufman Y, Razin A, Shemer R: MeCP2 deficiency in Rett syndrome causes epigenetic aberrations at the PWS/AS imprinting center that affects UBE3A expression. Hum Mol Genet. 2005, 14: 1049-1058. 10.1093/hmg/ddi097.
Article
CAS
PubMed
Google Scholar
Yasui DH, Peddada S, Bieda MC, Vallero RO, Hogart A, Nagarajan RP, Thatcher KN, Farnham PJ, Lasalle JM: Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci USA. 2007, 104: 19416-19421. 10.1073/pnas.0707442104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Morrow EM: Genomic copy number variation in disorders of cognitive development. J Am Acad Child Adolesc Psychiatry. 2010, 49: 1091-1104.
PubMed Central
PubMed
Google Scholar