American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed: Washington, DC; 2013.
Frazier TW, Youngstrom EA, Speer L, Embacher R, Law P, Constantino J, et al. Validation of proposed DSM-5 criteria for autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2012;51(1):28-40.e3.
Article
PubMed
Google Scholar
Schaefer GB. Clinical genetic aspects of autism spectrum disorders. Int J Mol Sci. 2016;17(2):180.
Article
PubMed Central
Google Scholar
de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22(4):345–61.
Article
PubMed
PubMed Central
Google Scholar
Vorstman JAS, Parr JR, Moreno-De-Luca D, Anney RJL, Nurnberger JI Jr, Hallmayer JF. Autism genetics: opportunities and challenges for clinical translation. Nat Rev Genet. 2017;18(6):362–76.
Article
CAS
PubMed
Google Scholar
Huang T-N, Hsueh Y-P. Brain-specific transcriptional regulator T-brain-1 controls brain wiring and neuronal activity in autism spectrum disorders. Front Neurosci. 2015;9:406.
Article
PubMed
PubMed Central
Google Scholar
De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Ercument Cicek A, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515(7526):209–15.
Article
PubMed
PubMed Central
Google Scholar
McDermott JH, Study DDD, Clayton-Smith J, Briggs TA. The TBR1-related autistic-spectrum-disorder phenotype and its clinical spectrum. Eur J Med Genet. 2018;61(5):253–6.
Article
PubMed
Google Scholar
O’Roak BJ, Vives L, Fu W, Egertson Jarrett D, Stanaway Ian B, Phelps Ian G, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338(6114):1619–22.
Article
PubMed
PubMed Central
Google Scholar
O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246–50.
Article
PubMed
PubMed Central
Google Scholar
Sapey-Triomphe L-A, Reversat J, Lesca G, Chatron N, Bussa M, Mazoyer S, et al. A de novo frameshift pathogenic variant in TBR1 identified in autism without intellectual disability. Hum Genomics. 2020;14(1):32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Traylor RN, Dobyns WB, Rosenfeld JA, Wheeler P, Spence JE, Bandholz AM, et al. Investigation of TBR1 Hemizygosity: four Individuals with 2q24 Microdeletions. Mol Syndromol. 2012;3(3):102–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vegas N, Cavallin M, Kleefstra T, de Boer L, Philbert M, Maillard C, et al. Mutations in TBR1 gene leads to cortical malformations and intellectual disability. Eur J Med Genet. 2018;61(12):759–64.
Article
PubMed
Google Scholar
Huang T-N, Chuang H-C, Chou W-H, Chen C-Y, Wang H-F, Chou S-J, et al. Tbr1 haploinsufficiency impairs amygdalar axonal projections and results in cognitive abnormality. Nat Neurosci. 2014;17(2):240–7.
Article
CAS
PubMed
Google Scholar
Huang T-N, Yen T-L, Qiu LR, Chuang H-C, Lerch JP, Hsueh Y-P. Haploinsufficiency of autism causative gene Tbr1 impairs olfactory discrimination and neuronal activation of the olfactory system in mice. Molecular Autism. 2019;10(1):5.
Article
PubMed
PubMed Central
Google Scholar
Yook C, Kim K, Kim D, Kang H, Kim S-G, Kim E, et al. A TBR1-K228E mutation induces Tbr1 upregulation, altered cortical distribution of interneurons, increased inhibitory synaptic transmission, and autistic-like behavioral deficits in mice. Front Mol Neurosci. 2019;12:241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bulfone A, Smiga SM, Shimamura K, Peterson A, Puelles L, Rubenstein JLR. T-Brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron. 1995;15(1):63–78.
Article
CAS
PubMed
Google Scholar
Bulfone A, Wang F, Hevner R, Anderson S, Cutforth T, Chen S, et al. An olfactory sensory map develops in the absence of normal projection neurons or GABAergic interneurons. Neuron. 1998;21(6):1273–82.
Article
CAS
PubMed
Google Scholar
Kolk SM, Whitman MC, Yun ME, Shete P, Donoghue MJ. A unique subpopulation of Tbr1-expressing deep layer neurons in the developing cerebral cortex. Mol Cell Neurosci. 2005;30(4):538–51.
Article
CAS
PubMed
Google Scholar
Hevner RF, Shi L, Justice N, Hsueh Y-P, Sheng M, Smiga S, et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron. 2001;29(2):353–66.
Article
CAS
PubMed
Google Scholar
McKenna WL, Betancourt J, Larkin KA, Abrams B, Guo C, Rubenstein JLR, et al. Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J Neurosci. 2011;31(2):549–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han W, Kwan KY, Shim S, Lam MMS, Shin Y, Xu X, et al. TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract. Proc Natl Acad Sci. 2011;108(7):3041.
Article
CAS
PubMed
PubMed Central
Google Scholar
Remedios R, Huilgol D, Saha B, Hari P, Bhatnagar L, Kowalczyk T, et al. A stream of cells migrating from the caudal telencephalon reveals a link between the amygdala and neocortex. Nat Neurosci. 2007;10(9):1141–50.
Article
CAS
PubMed
Google Scholar
Bedogni F, Hodge RD, Elsen GE, Nelson BR, Daza RAM, Beyer RP, et al. Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proc Natl Acad Sci. 2010;107(29):13129–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elsen GE, Bedogni F, Hodge RD, Bammler TK, MacDonald JW, Lindtner S, et al. The epigenetic factor landscape of developing neocortex is regulated by transcription factors Pax6→ Tbr2→ Tbr1. Front Neurosci. 2018;12:571.
Article
PubMed
PubMed Central
Google Scholar
Englund C, Fink A, Lau C, Pham D, Daza RAM, Bulfone A, et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci. 2005;25(1):247.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marinaro F, Marzi MJ, Hoffmann N, Amin H, Pelizzoli R, Niola F, et al. MicroRNA-independent functions of DGCR8 are essential for neocortical development and TBR1 expression. EMBO Rep. 2017;18(4):603–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nambot S, Faivre L, Mirzaa G, Thevenon J, Bruel A-L, Mosca-Boidron A-L, et al. De novo TBR1 variants cause a neurocognitive phenotype with ID and autistic traits: report of 25 new individuals and review of the literature. Eur J Hum Genet. 2020;28(6):770–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuang H-C, Huang T-N, Hsueh Y-P. Neuronal excitation upregulates Tbr1, a high-confidence risk gene of autism, mediating Grin2b expression in the adult brain. Front Cellular Neurosci. 2014;8:280.
Article
Google Scholar
Hsueh Y-P. The role of the MAGUK protein CASK in neural development and synaptic function. Curr Med Chem. 2006;13(16):1915–27.
Article
CAS
PubMed
Google Scholar
Hsueh Y-P. Calcium/calmodulin-dependent serine protein kinase and mental retardation. Ann Neurol. 2009;66(4):438–43.
Article
CAS
PubMed
Google Scholar
Hsueh Y-P, Wang T-F, Yang F-C, Sheng M. Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature. 2000;404(6775):298–302.
Article
CAS
PubMed
Google Scholar
Huang T-N, Hsueh Y-P. Calcium/calmodulin-dependent serine protein kinase (CASK), a protein implicated in mental retardation and autism-spectrum disorders, interacts with T-Brain-1 (TBR1) to control extinction of associative memory in male mice. J Psychiatry Neurosci. 2017;42(1):37–47.
Article
PubMed
Google Scholar
Wang G-S, Hong C-J, Yen T-Y, Huang H-Y, Ou Y, Huang T-N, et al. Transcriptional Modification by a CASK-Interacting Nucleosome Assembly Protein. Neuron. 2004;42(1):113–28.
Article
CAS
PubMed
Google Scholar
Wang T-F, Ding C-N, Wang G-S, Luo S-C, Lin Y-L, Ruan Y, et al. Identification of Tbr-1/CASK complex target genes in neurons. J Neurochem. 2004;91(6):1483–92.
Article
CAS
PubMed
Google Scholar
Chuang H-C, Huang T-N, Hsueh Y-P. T-Brain-1 – A potential master regulator in autism spectrum disorders. Autism Res. 2015;8(4):412–26.
Article
PubMed
Google Scholar
Lee E-J, Lee H, Huang T-N, Chung C, Shin W, Kim K, et al. Trans-synaptic zinc mobilization improves social interaction in two mouse models of autism through NMDAR activation. Nat Commun. 2015;6(1):7168.
Article
CAS
PubMed
Google Scholar
Hsu T-T, Huang T-N, Hsueh Y-P. Anterior commissure regulates neuronal activity of amygdalae and influences locomotor activity, social interaction and fear memory in mice. Front Mol Neurosci. 2020;13:47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang T-N, Hsu T-T, Lin M-H, Chuang H-C, Hu H-T, Sun C-P, et al. Interhemispheric connectivity potentiates the basolateral amygdalae and regulates social interaction and memory. Cell Rep. 2019;29(1):34-48.e4.
Article
CAS
PubMed
Google Scholar
Sensi SL, Paoletti P, Bush AI, Sekler I. Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci. 2009;10(11):780–91.
Article
CAS
PubMed
Google Scholar
Grabrucker AM, Knight MJ, Proepper C, Bockmann J, Joubert M, Rowan M, et al. Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation. EMBO J. 2011;30(3):569–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tao-Cheng J-H, Toy D, Winters CA, Reese TS, Dosemeci A. Zinc Stabilizes Shank3 at the postsynaptic density of hippocampal synapses. PLoS ONE. 2016;11(5):e0153979.
Article
PubMed
PubMed Central
Google Scholar
Gundelfinger ED, Boeckers TM, Baron MK, Bowie JU. A role for zinc in postsynaptic density asSAMbly and plasticity? Trends Biochem Sci. 2006;31(7):366–73.
Article
CAS
PubMed
Google Scholar
Arons MH, Lee K, Thynne CJ, Kim SA, Schob C, Kindler S, et al. Shank3 is part of a zinc-sensitive signaling system that regulates excitatory synaptic strength. J Neurosci. 2016;36(35):9124.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fourie C, Vyas Y, Lee K, Jung Y, Garner CC, Montgomery JM. Dietary zinc supplementation prevents autism related behaviors and striatal synaptic dysfunction in Shank3 Exon 13–16 Mutant Mice. Front Cellular Neurosci. 2018;12:374.
Article
CAS
Google Scholar
Vyas Y, Lee K, Jung Y, Montgomery JM. Influence of maternal zinc supplementation on the development of autism-associated behavioural and synaptic deficits in offspring Shank3-knockout mice. Mol Brain. 2020;13(1):110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pennington ZT, Dong Z, Feng Y, Vetere LM, Page-Harley L, Shuman T, et al. ezTrack: an open-source video analysis pipeline for the investigation of animal behavior. Sci Rep. 2019;9(1):19979.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cathala L, Misra C, Cull-Candy S. Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses. J Neurosci. 2000;20(16):5899–905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doron NN, Ledoux JE. Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. J Comp Neurol. 1999;412(3):383–409.
Article
CAS
PubMed
Google Scholar
Maren S, Quirk GJ. Neuronal signalling of fear memory. Nat Rev Neurosci. 2004;5(11):844–52.
Article
CAS
PubMed
Google Scholar
Tipps M, Marron Fernandez de Velasco E, Schaeffer A, Wickman K. Inhibition of Pyramidal Neurons in the Basal Amygdala Promotes Fear Learning. Eneuro. 2018;5(5):ENEURO.0272-18.2018.
Amano T, Duvarci S, Popa D, Paré D. The fear circuit revisited: contributions of the basal amygdala nuclei to conditioned fear. J Neurosci. 2011;31(43):15481.
Article
CAS
PubMed
PubMed Central
Google Scholar
Babaknejad N, Sayehmiri F, Sayehmiri K, Mohamadkhani A, Bahrami S. The relationship between zinc levels and autism: a systematic review and meta-analysis. Iran J Child Neurol. 2016;10(4):1–9.
PubMed
PubMed Central
Google Scholar
Crăciun EC, Bjørklund G, Tinkov AA, Urbina MA, Skalny AV, Rad F, et al. Evaluation of whole blood zinc and copper levels in children with autism spectrum disorder. Metab Brain Dis. 2016;31(4):887–90.
Article
PubMed
Google Scholar
Faber S, Zinn GM, Kern Ii JC, Skip Kingston HM. The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Biomarkers. 2009;14(3):171–80.
Article
CAS
PubMed
Google Scholar
Li S-o, Wang J-l, Bjørklund G, Zhao W-n, Yin C-h. Serum copper and zinc levels in individuals with autism spectrum disorders. NeuroReport. 2014;25:15.
Article
Google Scholar
Yasuda H, Yoshida K, Yasuda Y, Tsutsui T. Infantile zinc deficiency: association with autism spectrum disorders. Sci Rep. 2011;1(1):129.
Article
PubMed
PubMed Central
Google Scholar
Grabrucker S, Boeckers TM, Grabrucker AM. Gender dependent evaluation of autism like behavior in mice exposed to prenatal zinc deficiency. Front Behav Neurosci. 2016;10:37.
Article
PubMed
PubMed Central
Google Scholar
Grabrucker S, Jannetti L, Eckert M, Gaub S, Chhabra R, Pfaender S, et al. Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism spectrum disorders. Brain. 2014;137(1):137–52.
Article
PubMed
Google Scholar
Cezar LC, Kirsten TB, da Fonseca CCN, de Lima APN, Bernardi MM, Felicio LF. Zinc as a therapy in a rat model of autism prenatally induced by valproic acid. Prog Neuropsychopharmacol Biol Psychiatry. 2018;84:173–80.
Article
CAS
PubMed
Google Scholar
Hagmeyer S, Sauer AK, Grabrucker AM. Prospects of zinc supplementation in autism spectrum disorders and shankopathies such as Phelan McDermid Syndrome. Frontiers in Synaptic Neuroscience. 2018;10:11.
Article
PubMed
PubMed Central
Google Scholar
Kirsten TB, Queiroz-Hazarbassanov N, Bernardi MM, Felicio LF. Prenatal zinc prevents communication impairments and BDNF disturbance in a rat model of autism induced by prenatal lipopolysaccharide exposure. Life Sci. 2015;130:12–7.
Article
CAS
PubMed
Google Scholar
Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. 2014;10(9):e1004580.
Article
PubMed
PubMed Central
Google Scholar
Baron MK, Boeckers TM, Vaida B, Faham S, Gingery M, Sawaya MR, et al. An architectural framework that may lie at the core of the postsynaptic density. Science. 2006;311(5760):531–5.
Article
CAS
PubMed
Google Scholar
Boeckers TM, Liedtke T, Spilker C, Dresbach T, Bockmann J, Kreutz MR, et al. C-terminal synaptic targeting elements for postsynaptic density proteins ProSAP1/Shank2 and ProSAP2/Shank3. J Neurochem. 2005;92(3):519–24.
Article
CAS
PubMed
Google Scholar
Grabrucker A, Vaida B, Bockmann J, Boeckers TM. Synaptogenesis of hippocampal neurons in primary cell culture. Cell Tissue Res. 2009;338(3):333.
Article
PubMed
Google Scholar
Shih P-Y, Hsieh B-Y, Lin M-H, Huang T-N, Tsai C-Y, Pong W-L, et al. CTTNBP2 controls synaptic expression of zinc-related autism-associated proteins and regulates synapse formation and autism-like behaviors. Cell Rep. 2020;31(9):107700.
Article
CAS
PubMed
Google Scholar
Lee S, Kim S-J, Kwon O-B, Lee JH, Kim J-H. Inhibitory networks of the amygdala for emotional memory. Front Neural Circuits. 2013;7:129.
Article
PubMed
PubMed Central
Google Scholar
Adolphs R. What does the amygdala contribute to social cognition? Ann N Y Acad Sci. 2010;1191(1):42–61.
Article
PubMed
PubMed Central
Google Scholar
Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB. Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr. 2000;130(5):1471S-S1483.
Article
CAS
PubMed
Google Scholar
Paoletti P, Vergnano AM, Barbour B, Casado M. Zinc at glutamatergic synapses. Neuroscience. 2009;158(1):126–36.
Article
CAS
PubMed
Google Scholar
Kodirov SA, Takizawa S, Joseph J, Kandel ER, Shumyatsky GP, Bolshakov VY. Synaptically released zinc gates long-term potentiation in fear conditioning pathways. Proc Natl Acad Sci. 2006;103(41):15218–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Husseini AE, Topinka JR, Lehrer-Graiwer JE, Firestein BL, Craven SE, Aoki C, et al. Ion Channel Clustering by Membrane-associated Guanylate Kinases: DIFFERENTIAL REGULATION BY N-TERMINAL LIPID AND METAL BINDING MOTIFS*. J Biol Chem. 2000;275(31):23904–10.
Article
CAS
PubMed
Google Scholar
Elias GM, Elias LAB, Apostolides PF, Kriegstein AR, Nicoll RA. Differential trafficking of AMPA and NMDA receptors by SAP102 and PSD-95 underlies synapse development. Proc Natl Acad Sci. 2008;105(52):20953–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu M, Shi R, Hwang H, Han KS, Wong MH, Ren X, et al. SAP102 regulates synaptic AMPAR function through a CNIH-2-dependent mechanism. J Neurophysiol. 2018;120(4):1578–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen B-S, Thomas EV, Sanz-Clemente A, Roche KW. NMDA Receptor-dependent regulation of dendritic spine morphology by SAP102 splice variants. J Neurosci. 2011;31(1):89–96.
Article
PubMed
PubMed Central
Google Scholar
Duffney LJ, Wei J, Cheng J, Liu W, Smith KR, Kittler JT, et al. Shank3 deficiency induces NMDA receptor hypofunction via an actin-dependent mechanism. J Neurosci. 2013;33(40):15767–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raynaud F, Janossy A, Dahl J, Bertaso F, Perroy J, Varrault A, et al. Shank3-Rich2 interaction regulates AMPA receptor recycling and synaptic long-term potentiation. J Neurosci. 2013;33(23):9699–715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arons MH, Thynne CJ, Grabrucker AM, Li D, Schoen M, Cheyne JE, et al. Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin–neuroligin-mediated transsynaptic signaling. J Neurosci. 2012;32(43):14966.
Article
CAS
PubMed
PubMed Central
Google Scholar
Betz A, Thakur P, Junge HJ, Ashery U, Rhee J-S, Scheuss V, et al. Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron. 2001;30(1):183–96.
Article
CAS
PubMed
Google Scholar
Dieck S, Sanmartí-Vila L, Langnaese K, Richter K, Kindler S, Soyke A, et al. Bassoon, a novel zinc-finger CAG/Glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J Cell Biol. 1998;142(2):499–509.
Article
PubMed Central
Google Scholar
Fenster SD, Chung WJ, Zhai R, Cases-Langhoff C, Voss B, Garner AM, et al. Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron. 2000;25(1):203–14.
Article
CAS
PubMed
Google Scholar
Ferrara NC, Trask S, Rosenkranz JA. Maturation of amygdala inputs regulate shifts in social and fear behaviors: a substrate for developmental effects of stress. Neurosci Biobehav Rev. 2021;125:11–25.
Article
PubMed
Google Scholar
Mesquita LT, Abreu AR, de Abreu AR, de Souza AA, de Noronha SR, Silva FC, et al. New insights on amygdala: Basomedial amygdala regulates the physiological response to social novelty. Neuroscience. 2016;330:181–90.
Article
CAS
PubMed
Google Scholar
Vogt K, Mellor J, Tong G, Nicoll R. The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron. 2000;26(1):187–96.
Article
CAS
PubMed
Google Scholar
LeBlanc JJ, Fagiolini M. Autism: A “Critical Period” disorder? Neural Plast. 2011;2011:921680.
Article
PubMed
PubMed Central
Google Scholar
Mei Y, Monteiro P, Zhou Y, Kim J-A, Gao X, Fu Z, et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. 2016;530(7591):481–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J Nutr. 1993;123(11):1939–51.
Article
CAS
PubMed
Google Scholar
Tallman DL, Taylor CG. Effects of dietary fat and zinc on adiposity, serum leptin and adipose fatty acid composition in C57BL/6J mice. J Nutr Biochem. 2003;14(1):17–23.
Article
CAS
PubMed
Google Scholar
Meguid NA, Bjørklund G, Gebril OH, Doşa MD, Anwar M, Elsaeid A, et al. The role of zinc supplementation on the metallothionein system in children with autism spectrum disorder. Acta Neurol Belg. 2019;119(4):577–83.
Article
PubMed
Google Scholar
Bjorklund G. The role of zinc and copper in autism spectrum disorders. Acta Neurobiol Exp. 2013;73(2):225–36.
Google Scholar
Festa MD, Anderson HL, Dowdy RP, Ellersieck MR. Effect of zinc intake on copper excretion and retention in men. Am J Clin Nutr. 1985;41(2):285–92.
Article
CAS
PubMed
Google Scholar
Shrimpton R, Gross R, Darnton-Hill I, Young M. Zinc deficiency: what are the most appropriate interventions? BMJ. 2005;330(7487):347–9.
Article
PubMed
PubMed Central
Google Scholar
Trumbo P, Yates AA, Schlicker S, Poos M. Dietary Reference Intakes: Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. J Am Diet Assoc. 2001;101(3):294–301.
Article
CAS
PubMed
Google Scholar
Vela G, Stark P, Socha M, Sauer AK, Hagmeyer S, Grabrucker AM. Zinc in gut-brain interaction in autism and neurological disorders. Neural Plast. 2015;2015:972791.
Article
PubMed
PubMed Central
Google Scholar
Chhabra R, Ruozi B, Vilella A, Belletti D, Mangus K, Pfaender S, et al. Application of polymeric nanoparticles for CNS targeted zinc delivery in vivo. CNS Neurol Disord: Drug Targets. 2015;14(8):1041–53.
Article
CAS
Google Scholar
Vilella A, Belletti D, Sauer AK, Hagmeyer S, Sarowar T, Masoni M, et al. Reduced plaque size and inflammation in the APP23 mouse model for Alzheimer’s disease after chronic application of polymeric nanoparticles for CNS targeted zinc delivery. J Trace Elem Med Biol. 2018;49:210–21.
Article
CAS
PubMed
Google Scholar