American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.
Book
Google Scholar
Charman T, Baron-Cohen S, Swettenham J, Baird G, Drew A, Cox A. Predicting language outcome in infants with autism and pervasive developmental disorder. Int J Lang Commun Disord. 2003;38:265–85.
Article
PubMed
Google Scholar
Delinicolas EK, Young RL. Joint attention, language, social relating, and stereotypical behaviours in children with autistic disorder. Autism. 2007;11:425–36.
Article
PubMed
Google Scholar
Mundy P, Block J, Delgado C, Pomares Y, Van Hecke AV, Parlade MV. Individual differences and the development of joint attention in infancy. Child Dev. 2007;78:938–54.
Article
PubMed
PubMed Central
Google Scholar
Schertz HH, Odom SL, Baggett KM, Sideris JH. Effects of joint attention mediated learning for toddlers with autism spectrum disorders: an initial randomized controlled study. Early Child Res Q. 2013;28:249–58.
Article
Google Scholar
Schietecatte I, Roeyers H, Warreyn P. Exploring the nature of joint attention impairments in young children with autism spectrum disorder: associated social and cognitive skills. J Autism Dev Disord. 2012;42:1–12.
Article
PubMed
Google Scholar
Mundy P, Sigman M, Kasari C. A longitudinal study of joint attention and language development in autistic children. J Autism Dev Disord. 1990;20:115–28.
Article
CAS
PubMed
Google Scholar
Murza KA, Schwartz JB, Hahs-Vaughn DL, Nye C. Joint attention interventions for children with autism spectrum disorder: a systematic review and meta-analysis. Int J Lang Commun Disord. 2016;51:236–51.
Article
PubMed
Google Scholar
Mundy P, Kim K, McIntyre N, Lerro L, Jarrold W. Brief report: joint attention and information processing in children with higher functioning autism spectrum disorders. J Autism Dev Disord. 2016;46:2555–60.
Article
PubMed
Google Scholar
Kasari C, Gulsrud AC, Wong C, Kwon S, Locke J. Randomized controlled caregiver mediated joint engagement intervention for toddlers with autism. J Autism Dev Disord. 2010;40:1045–56.
Article
PubMed
PubMed Central
Google Scholar
Poon KK, Watson LR, Baranek GT, Poe MD. To what extent do joint attention, imitation, and object play behaviors in infancy predict later communication and intellectual functioning in ASD? J Autism Dev Disord. 2012;42:1064–74.
Article
PubMed
PubMed Central
Google Scholar
Dawson G, Meltzoff AN, Osterling J, Rinaldi J, Brown E. Children with autism fail to orient to naturally occurring social stimuli. J Autism Dev Disord. 1998;28:479–85.
Article
CAS
PubMed
Google Scholar
Courchesne E, Chisum H, Townsend J. Neural activity-dependent brain changes in development: implications for psychopathology. Dev Psychopathol. 1994;6:697–722. https://doi.org/10.1017/S0954579400004740.
Anzalone SM, Tilmont E, Boucenna S, Xavier J, Jouen A-L, Bodeau N, et al. How children with autism spectrum disorder behave and explore the 4-dimensional (spatial 3D+time) environment during a joint attention induction task with a robot. Res Autism Spec Disord. 2014;8:814–26.
Article
Google Scholar
Scott JG, Saint-Georges C, Mahdhaoui A, Chetouani M, Cassel RS, Laznik M-C, et al. Do parents recognize autistic deviant behavior long before diagnosis? Taking into account interaction using computational methods. PLoS One. 2011;6:e22393.
Article
CAS
Google Scholar
White SA, Cohen D, Cassel RS, Saint-Georges C, Mahdhaoui A, Laznik M-C, et al. Do parentese prosody and fathers’ involvement in interacting facilitate social interaction in infants who later develop autism? PLoS One. 2013;8:e61402.
Article
Google Scholar
Klin A, Lin DJ, Gorrindo P, Ramsay G, Jones W. Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature. 2009;459:257–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baron-Cohen S. The hyper-systemizing, assortative mating theory of autism. Prog Neuro-Psychopharmacol Biol Psychiatry. 2006;30:865–72.
Article
Google Scholar
Baron-Cohen S. The extreme male brain theory of autism. Trends Cogn Sci. 2002;6:248–54.
Article
PubMed
Google Scholar
Kumazaki H, Muramatsu T, Yoshikawa Y, Matsumoto Y, Miyao M, Ishiguro H, et al. Tele-operating an android robot to promote the understanding of facial expressions and to increase facial expressivity in individuals with autism spectrum disorder. Am J Psychiatry. 2017;174:904–5.
Article
PubMed
Google Scholar
Cook J, Swapp D, Pan X, Bianchi-Berthouze N, Blakemore SJ. Atypical interference effect of action observation in autism spectrum conditions. Psychol Med. 2014;44:731–40.
Article
CAS
PubMed
Google Scholar
Pierno AC, Mari M, Lusher D, Castiello U. Robotic movement elicits visuomotor priming in children with autism. Neuropsychologia. 2008;46:448–54.
Article
PubMed
Google Scholar
Yun SS, Choi J, Park SK, Bong GY, Yoo H. Social skills training for children with autism spectrum disorder using a robotic behavioral intervention system. Autism Res. 2017;10:1306–23.
Article
PubMed
Google Scholar
Huskens B, Palmen A, Van der Werff M, Lourens T, Barakova E. Improving collaborative play between children with autism spectrum disorders and their siblings: the effectiveness of a robot-mediated intervention based on Lego® therapy. J Autism Dev Disord. 2015;45:3746–55.
Article
PubMed
Google Scholar
Diehl JJ, Schmitt LM, Villano M, Crowell CR. The clinical use of robots for individuals with autism spectrum disorders: a critical review. Res Autism Spectr Disord. 2012;6:249–62.
Article
PubMed
PubMed Central
Google Scholar
Bird G, Leighton J, Press C, Heyes C. Intact automatic imitation of human and robot actions in autism spectrum disorders. Proc Biol Sci. 2007;274:3027–31.
PubMed
PubMed Central
Google Scholar
Warren ZE, Zheng Z, Swanson AR, Bekele E, Zhang L, Crittendon JA, et al. Can robotic interaction improve joint attention skills? J Autism Dev Disord. 2015;45:3726–34.
Article
PubMed
PubMed Central
Google Scholar
Bekele E, Crittendon JA, Swanson A, Sarkar N, Warren ZE. Pilot clinical application of an adaptive robotic system for young children with autism. Autism. 2014;18:598–608.
Article
PubMed
Google Scholar
Pennisi P, Tonacci A, Tartarisco G, Billeci L, Ruta L, Gangemi S, et al. Autism and social robotics: a systematic review. Autism Res. 2016;9:165–83.
Article
PubMed
Google Scholar
Shimaya J, Yoshikawa Y, Matsumoto Y, Kumazaki H, Ishiguro H, Mimura M, et al. Advantages of indirect conversation via a desktop humanoid robot: case study on daily life guidance for adolescents with autism spectrum disorders. 25th IEEE Int Symp Robot Hum Interact Commun. 2016:831–6.
Kumazaki H, Warren Z, Swanson A, Yoshikawa Y, Matsumoto Y, Takahashi H, et al. Can robotic systems promote self-disclosure in adolescents with autism spectrum disorder? A pilot study. Front Psychiatry. 2018;9:36.
Article
PubMed
PubMed Central
Google Scholar
Vaiouli P, Grimmet K, Ruich LJ. “Bill is now singing”: joint engagement and the emergence of social communication of three young children with autism. Autism. 2013;19:73–83.
Article
PubMed
Google Scholar
Eissa MA. The effectiveness of a joint attention training program on improving communication skills of children with autism spectrum disorder. Int J Psycho-Educational Sci. 2015;4:3–12.
Google Scholar
Kaufman A, Kaufman N. Kaufman assessment battery for children: administration and scoring manual. Circle Pines, MN: American Guidance Service; 1983.
Google Scholar
Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30:205–23.
Article
CAS
PubMed
Google Scholar
Wing L, Leekam SR, Libby SJ, Gould J, Larcombe M. The diagnostic interview for social and communication disorders: background, inter-rater reliability and clinical use. J Child Psychol Psychiatry. 2002;43:307–25.
Article
PubMed
Google Scholar
Rutter M, Bailey A, Lord C. The social communication questionnaire. Los Angeles, CA: Western Psychological Services; 2010.
Google Scholar
Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59(Suppl 20):22–33. quiz 34
PubMed
Google Scholar
Otsubo T, Tanaka K, Koda R, Shinoda J, Sano N, Tanaka S, et al. Reliability and validity of Japanese version of the Mini-International Neuropsychiatric Interview. Psychiatry Clin Neurosci. 2005;59:517–26.
Article
PubMed
Google Scholar
Nishio S, Taura K, Sumioka H, Ishiguro H. Teleoperated android robot as emotion regulation media. Int J Soc Rob. 2013;5:563–73.
Article
Google Scholar
Anderson V, Hiramoto M, Wong A. Prosodic analysis of the interactional particle ne in Japanese gendered speech. Japanese/Korean Linguis. 2007;15:43–54.
Google Scholar
Pan Y, Steed A. A comparison of avatar-, video-, and robot-mediated interaction on users’ trust in expertise. Front Robot AI. 2016;3. https://doi.org/10.3389/frobt.2016.00012.
Lee KM, Jung Y, Kim J, Kim SR. Are physically embodied social agents better than disembodied social agents? The effects of physical embodiment, tactile interaction, and people's loneliness in human–robot interaction. Int J Hum Comput Stud. 2006;64:962–73.
Article
Google Scholar
Wainer J, Feil-seifer D, Shell D, Mataric M. The role of physical embodiment in human-robot interaction. 15th IEEE Int Symp Robot Hum Interactive Commun. 2006:117–22.
Madipakkam AR, Rothkirch M, Dziobek I, Sterzer P. Unconscious avoidance of eye contact in autism spectrum disorder. Sci Rep. 2017;7:13378.
Article
PubMed
PubMed Central
CAS
Google Scholar
Damm O, Malchus K, Jaecks P, Krach S, Paulus F, Naber M, et al. Different gaze behavior in human-robot interaction in Asperger’s syndrome: an eye-tracking study. IEEE RO-MAN. 2013:368–9.
Metta G, Natale L, Nori F, Sandini G, Vernon D, Fadiga L, et al. The iCub humanoid robot: an open-systems platform for research in cognitive development. Neural Netw. 2010;23:1125–34.
Article
PubMed
Google Scholar
Warren Z, Zheng Z, Das S, Young EM, Swanson A, Weitlauf A, et al. Brief report: development of a robotic intervention platform for young children with ASD. J Autism Dev Disord. 2015;45:3870–6.
Article
PubMed
PubMed Central
Google Scholar