Garber KB, Visootsak J, Warren ST. Fragile X syndrome. Eur J Hum Genet. 2008;16(6):666–72.
Article
CAS
Google Scholar
Protic D, Salcedo-Arellano MJ, Dy JB, Potter LA, Hagerman RJ. New Targeted treatments for fragile X syndrome. Curr Pediatr Rev. 2019;15(4):251–8.
Article
CAS
Google Scholar
Schmitt LM, Shaffer RC, Hessl D, Erickson C. Executive function in fragile X syndrome: a systematic review. Brain Sci. 2019;9(1):15.
Article
Google Scholar
Baker EK, Arpone M, Vera SA, Bretherton L, Ure A, Kraan CM, et al. Intellectual functioning and behavioural features associated with mosaicism in fragile X syndrome. J Neurodev Disord. 2019;11(1):41.
Article
Google Scholar
Meng L, Kaufmann WE, Frye RE, Ong K, Kaminski JW, Velinov M, et al. The association between mosaicism type and cognitive and behavioral functioning among males with fragile X syndrome. Am J Med Genet A. 2022;188(3):858–66.
Article
CAS
Google Scholar
Bishop SL, Richler J, Cain AC, Lord C. Predictors of perceived negative impact in mothers of children with autism spectrum disorder. Am J Ment Retard. 2007;112(6):450–61.
Article
Google Scholar
Lewis P, Abbeduto L, Murphy M, Richmond E, Giles N, Bruno L, et al. Cognitive, language and social-cognitive skills of individuals with fragile X syndrome with and without autism. J Intellect Disabil Res. 2006;50(Pt 7):532–45.
Article
CAS
Google Scholar
Weber JD, Smith E, Berry-Kravis E, Cadavid D, Hessl D, Erickson C. Voice of people with fragile X syndrome and their families: reports from a survey on treatment priorities. Brain Sci. 2019;9(2):18.
Article
Google Scholar
Alvarez JA, Emory E. Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev. 2006;16(1):17–42.
Article
Google Scholar
Hallahan BP, Craig MC, Toal F, Daly EM, Moore CJ, Ambikapathy A, et al. In vivo brain anatomy of adult males with fragile X syndrome: an MRI study. Neuroimage. 2011;54(1):16–24.
Article
Google Scholar
Gothelf D, Furfaro JA, Hoeft F, Eckert MA, Hall SS, O’Hara R, et al. Neuroanatomy of fragile X syndrome is associated with aberrant behavior and the fragile X mental retardation protein (FMRP). Ann Neurol. 2008;63(1):40–51.
Article
Google Scholar
Kwon H, Menon V, Eliez S, Warsofsky IS, White CD, Dyer-Friedman J, et al. Functional neuroanatomy of visuospatial working memory in fragile X syndrome: relation to behavioral and molecular measures. Am J Psychiatry. 2001;158(7):1040–51.
Article
CAS
Google Scholar
Hoeft F, Hernandez A, Parthasarathy S, Watson CL, Hall SS, Reiss AL. Fronto-striatal dysfunction and potential compensatory mechanisms in male adolescents with fragile X syndrome. Hum Brain Mapp. 2007;28(6):543–54.
Article
Google Scholar
Esteban FJ, van der Molen MJW, Stam CJ, van der Molen MW. Resting-state EEG oscillatory dynamics in fragile X syndrome: abnormal functional connectivity and brain network organization. PLoS ONE. 2014;9(2):e88451.
Article
Google Scholar
Smith EG, Pedapati EV, Liu R, Schmitt LM, Dominick KC, Shaffer RC, et al. Sex differences in resting EEG power in fragile X syndrome. J Psychiatr Res. 2021;138:89–95.
Article
Google Scholar
Wang J, Ethridge LE, Mosconi MW, White SP, Binder DK, Pedapati EV, et al. A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome. J Neurodev Disord. 2017;9(1):1–12.
Article
Google Scholar
Lovelace JW, Ethell IM, Binder DK, Razak KA. Translation-relevant EEG phenotypes in a mouse model of fragile X syndrome. Neurobiol Dis. 2018;115:39–48.
Article
CAS
Google Scholar
Pedapati EV, Schmitt LM, Ethridge LE, Miyakoshi M, Sweeney JA, Liu R, et al. Neocortical localization and thalamocortical modulation of neuronal hyperexcitability in fragile X syndrome. Commun Biol. 2022;5:1–14.
Article
Google Scholar
Goswami S, Cavalier S, Sridhar V, Huber KM, Gibson JR. Local cortical circuit correlates of altered EEG in the mouse model of Fragile X syndrome. Neurobiol Dis. 2019;124:563–72.
Article
Google Scholar
Jonak CR, Lovelace JW, Ethell IM, Razak KA, Binder DK. Multielectrode array analysis of EEG biomarkers in a mouse model of fragile X syndrome. Neurobiol Dis. 2020;138:104794.
Article
CAS
Google Scholar
Gibson JR, Bartley AF, Hays SA, Huber KM. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J Neurophysiol. 2008;100(5):2615–26.
Article
Google Scholar
Pedapati EV, Schmitt LM, Liu R, Ethridge LE, Smith E, Sweeney JA, et al. Neocortical localization and thalamocortical modulation of neuronal hyperexcitability in fragile X syndrome. medRxiv Preprint Server for Health Sciences. 2021.
van der Molen MJ, Stam CJ, van der Molen MW. Resting-state EEG oscillatory dynamics in fragile X syndrome: abnormal functional connectivity and brain network organization. PLoS ONE. 2014;9(2):e88451.
Article
Google Scholar
Jones DT, Graff-Radford J. Executive dysfunction and the prefrontal cortex. CONTINUUM Lifelong Learn Neurol. 2021;27(6):1586–601.
Article
Google Scholar
Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68.
Article
Google Scholar
Friedman NP, Robbins TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology. 2022;47(1):72–89.
Article
Google Scholar
Norris JE, DeStefano LA, Schmitt LM, Pedapati EV, Erickson CA, Sweeney JA, et al. Hemispheric utilization of alpha oscillatory dynamics as a unique biomarker of neural compensation in females with fragile X syndrome. ACS Chem Neurosci. 2022. https://doi.org/10.1021/acschemneuro.2c00404.
Article
Google Scholar
Roid GH, Pomplun M. The Stanford-Binet Intelligence Scales, fifth edition. Contemporary intellectual assessment: theories, tests, and issues. 3rd ed. New York: The Guilford Press; 2012. p. 249–68.
Google Scholar
Sansone SM, Schneider A, Bickel E, Berry-Kravis E, Prescott C, Hessl D. Improving IQ measurement in intellectual disabilities using true deviation from population norms. J Neurodev Disord. 2014;6(1):16.
Article
Google Scholar
Ethridge LE, White SP, Mosconi MW, Wang J, Pedapati EV, Erickson CA, et al. Neural synchronization deficits linked to cortical hyper-excitability and auditory hypersensitivity in fragile X syndrome. Mol Autism. 2017;8:22.
Article
Google Scholar
Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;2011:879716.
Article
Google Scholar
Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968–80.
Article
Google Scholar
Elliott R. Executive functions and their disorders: imaging in clinical neuroscience. Br Med Bull. 2003;65(1):49–59.
Article
Google Scholar
Gertel VH, Zhang H, Diaz MT. Stronger right hemisphere functional connectivity supports executive aspects of language in older adults. Brain Lang. 2020;206:104771.
Article
Google Scholar
Margolis A, Donkervoort M, Kinsbourne M, Peterson BS. Interhemispheric connectivity and executive functioning in adults with Tourette syndrome. Neuropsychology. 2006;20(1):66–76.
Article
Google Scholar
Brzezicka A, Kamiński J, Kamińska OK, Wołyńczyk-Gmaj D, Sedek G. Frontal EEG alpha band asymmetry as a predictor of reasoning deficiency in depressed people. Cogn Emot. 2017;31(5):868–78.
Article
Google Scholar
Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci. 2012;16(12):606–17.
Article
Google Scholar
Palva S, Palva JM. Functional roles of alpha-band phase synchronization in local and large-scale cortical networks. Front Psychol. 2011;2:204.
Article
Google Scholar
Roux F, Wibral M, Mohr HM, Singer W, Uhlhaas PJ. Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. J Neurosci. 2012;32(36):12411–20.
Article
CAS
Google Scholar
Bosman CA, Lansink CS, Pennartz CM. Functions of gamma-band synchronization in cognition: from single circuits to functional diversity across cortical and subcortical systems. Eur J Neurosci. 2014;39(11):1982–99.
Article
Google Scholar
Huang MX, Huang CW, Harrington DL, Nichols S, Robb-Swan A, Angeles-Quinto A, et al. Marked increases in resting-state MEG gamma-band activity in combat-related mild traumatic brain injury. Cereb Cortex. 2020;30(1):283–95.
Article
Google Scholar
Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition–timing hypothesis. Brain Res Rev. 2007;53(1):63–88.
Article
Google Scholar
Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz CMA. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage. 2011;55(4):1548–65.
Article
Google Scholar
Cohen MX. Analyzing neural time series data: theory and practice. Grafman J, editor. Cambridge: The MIT Press; 2014.
Vindiola MM, Vettel JM, Gordon SM, Franaszczuk PJ, McDowell K. Applying EEG phase synchronization measures to non-linearly coupled neural mass models. J Neurosci Methods. 2014;226:1–14.
Article
CAS
Google Scholar
Testsysteme P. KiTAP test of attentional performance for children. 2011.
Knox A, Schneider A, Abucayan F, Hervey C, Tran C, Hessl D, et al. Feasibility, reliability, and clinical validity of the Test of Attentional Performance for Children (KiTAP) in Fragile X syndrome (FXS). J Neurodev Disord. 2012;4(1):2.
Article
Google Scholar
Schmitt LM, White SP, Cook EH, Sweeney JA, Mosconi MW. Cognitive mechanisms of inhibitory control deficits in autism spectrum disorder. J Child Psychol Psychiatry. 2017;59:586–95.
Article
Google Scholar
Bates D, Machler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
Article
Google Scholar
Fries P. Rhythms for cognition: communication through coherence. Neuron. 2015;88(1):220–35.
Article
CAS
Google Scholar
Hata M, Kazui H, Tanaka T, Ishii R, Canuet L, Pascual-Marqui RD, et al. Functional connectivity assessed by resting state EEG correlates with cognitive decline of Alzheimer’s disease—an eLORETA study. Clin Neurophysiol. 2016;127(2):1269–78.
Article
Google Scholar
Machinskaya RI, Semenova OA, Absatova KA, Sugrobova GA. Neurophysiological factors associated with cognitive deficits in children with ADHD symptoms: EEG and neuropsychological analysis. Psychol Neurosci. 2014;7:461–73.
Article
Google Scholar
Xu P, Xiong XC, Xue Q, Tian Y, Peng Y, Zhang R, et al. Recognizing mild cognitive impairment based on network connectivity analysis of resting EEG with zero reference. Physiol Meas. 2014;35(7):1279–98.
Article
Google Scholar
Donner TH, Siegel M. A framework for local cortical oscillation patterns. Trends Cogn Sci. 2011;15(5):191–9.
Article
Google Scholar
Cabral J, Kringelbach ML, Deco G. Exploring the network dynamics underlying brain activity during rest. Prog Neurobiol. 2014;114:102–31.
Article
Google Scholar
Lovelace JW, Wen TH, Reinhard S, Hsu MS, Sidhu H, Ethell IM, et al. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of fragile X syndrome. Neurobiol Dis. 2016;89:126–35.
Article
CAS
Google Scholar
Waschke L, Kloosterman NA, Obleser J, Garrett DD. Behavior needs neural variability. Neuron. 2021;109(5):751–66.
Article
CAS
Google Scholar
Kloosterman NA, Kosciessa JQ, Lindenberger U, Fahrenfort JJ, Garrett DD. Boosts in brain signal variability track liberal shifts in decision bias. Elife. 2020;9:e54201.
Article
CAS
Google Scholar
Garrett DD, Epp SM, Kleemeyer M, Lindenberger U, Polk TA. Higher performers upregulate brain signal variability in response to more feature-rich visual input. Neuroimage. 2020;217:116836.
Article
Google Scholar
Wilkinson CL, Nelson CA. Increased aperiodic gamma power in young boys with fragile X syndrome is associated with better language ability. Mol Autism. 2021;12(1):17.
Article
Google Scholar
Ethridge LE, De Stefano LA, Schmitt LM, Woodruff NE, Brown KL, Tran M, et al. Auditory EEG biomarkers in fragile X syndrome: clinical relevance. Front Integr Neurosci. 2019;13:60.
Article
Google Scholar
Côté V, Lalancette È, Knoth IS, Côté L, Agbogba K, Vannasing P, et al. Distinct patterns of repetition suppression in Fragile X syndrome, down syndrome, tuberous sclerosis complex and mutations in SYNGAP1. Brain Res. 2021;1751:147205.
Article
Google Scholar
Proteau-Lemieux M, Knoth IS, Agbogba K, Côté V, Barlahan Biag HM, Thurman AJ, et al. EEG signal complexity is reduced during resting-state in fragile X syndrome. Front Psychiatry. 2021;12:716707.
Article
Google Scholar
He CX, Portera-Cailliau C. The trouble with spines in fragile X syndrome: density, maturity and plasticity. Neuroscience. 2013;251:120–8.
Article
CAS
Google Scholar
Zhang Z, Marro SG, Zhang Y, Arendt KL, Patzke C, Zhou B, et al. The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. Sci Transl Med. 2018. https://doi.org/10.1126/scitranslmed.aar4338.
Article
Google Scholar
Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, et al. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci USA. 1997;94(10):5401–4.
Article
CAS
Google Scholar
Doll CA, Broadie K. Activity-dependent FMRP requirements in development of the neural circuitry of learning and memory. Development. 2015;142(7):1346–56.
Article
CAS
Google Scholar
Kennedy T, Rinker D, Broadie K. Genetic background mutations drive neural circuit hyperconnectivity in a fragile X syndrome model. BMC Biol. 2020;18(1):94.
Article
CAS
Google Scholar
Schmitt LM, Ankeny LD, Sweeney JA, Mosconi MW. Inhibitory control processes and the strategies that support them during hand and eye movements. Front Psychol. 2016;7:1–14.
Article
Google Scholar
Martin A, Quintin EM, Hall SS, Reiss AL. The role of executive function in independent living skills in female adolescents and young adults with fragile X syndrome. Am J Intellect Dev Disabil. 2016;121(5):448–60.
Article
Google Scholar
Boggs AE, Schmitt LM, McLane RD, Adayev T, LaFauci G, Horn PS, et al. Optimization, validation and initial clinical implications of a Luminex-based immunoassay for the quantification of fragile X protein from dried blood spots. Sci Rep. 2022;12(1):5617.
Article
CAS
Google Scholar
Wang X, Snape M, Klann E, Stone JG, Singh A, Petersen RB, et al. Activation of the extracellular signal-regulated kinase pathway contributes to the behavioral deficit of fragile x-syndrome. J Neurochem. 2012;121(4):672–9.
Article
CAS
Google Scholar
Dupuy FE, Clarke AR, Barry RJ, McCarthy R, Selikowitz M. EEG coherence in girls with attention-deficit/hyperactivity disorder: stimulant effects in good responders. Int J Psychophysiol. 2008;70(3):151–7.
Article
Google Scholar
Clarke AR, Barry RJ, McCarthy R, Selikowitz M, Johnstone SJ, Abbott I, et al. Effects of methylphenidate on EEG coherence in attention-deficit/hyperactivity disorder. Int J Psychophysiol. 2005;58(1):4–11.
Article
Google Scholar
Michelini G, Jurgiel J, Bakolis I, Cheung CHM, Asherson P, Loo SK, et al. Atypical functional connectivity in adolescents and adults with persistent and remitted ADHD during a cognitive control task. Transl Psychiatry. 2019;9(1):137.
Article
Google Scholar
Murias M, Swanson JM, Srinivasan R. Functional connectivity of frontal cortex in healthy and ADHD children reflected in EEG coherence. Cereb Cortex. 2007;17(8):1788–99.
Article
Google Scholar
Aron AR, Poldrack RA. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J Neurosci. 2006;26(9):2424–33.
Article
CAS
Google Scholar
Hu S, Ide JS, Zhang S, Li CR. The right superior frontal gyrus and individual variation in proactive control of impulsive response. J Neurosci. 2016;36(50):12688–96.
Article
CAS
Google Scholar
D’Cruz AM, Mosconi MW, Steele S, Rubin LH, Luna B, Minshew N, et al. Lateralized response timing deficits in autism. Biol Psychiatry. 2009;66(4):393–7.
Article
Google Scholar
O’Reilly C, Lewis JD, Elsabbagh M. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS ONE. 2017;12(5):e0175870.
Article
Google Scholar
Abbeduto L, Brady N, Kover ST. Language development and fragile X syndrome: profiles, syndrome-specificity, and within-syndrome differences. Ment Retard Dev Disabil Res Rev. 2007;13(1):36–46.
Article
Google Scholar
Roberts JE, Mankowski JB, Sideris J, Goldman BD, Hatton DD, Mirrett PL, et al. Trajectories and predictors of the development of very young boys with fragile X syndrome. J Pediatr Psychol. 2009;34(8):827–36.
Article
Google Scholar
Schmitt LM, Wang J, Pedapati EV, Thurman AJ, Abbeduto L, Erickson CA, et al. A neurophysiological model of speech production deficits in fragile X syndrome. Brain Commun. 2020. https://doi.org/10.1093/braincomms/fcz042.
Article
Google Scholar