Chen P, Hong W. Neural circuit mechanisms of social behavior. Neuron. 2018;98(1):16–30. https://doi.org/10.1016/j.neuron.2018.02.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong W, Kennedy A, Burgos-artizzu XP, Zelikowsky M, Navonne SG, Perona P. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. Proc Natl Acad Sci U S A. 2015;112(38):E5351–60. https://doi.org/10.1073/pnas.1515982112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Contestabile A, Casarotto G, Girard B, Tzanoulinou S, Bellone C. Deconstructing the contribution of sensory cues in social approach. Eur J Neurosci. 2021;53(9):3199–211. https://doi.org/10.1111/ejn.15179.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhanji JP, Delgado MR. The social brain and reward: social information processing in the human striatum. Wiley Interdiscipl Rev Cogn Sci. 2014;5:61–73. https://doi.org/10.1002/wcs.1266.
Article
Google Scholar
Krach S, Paulus FM, Bodden M, Kircher T. The rewarding nature of social interactions. Front Behav Neurosci. 2010. https://doi.org/10.3389/fnbeh.2010.00022.
Article
PubMed
PubMed Central
Google Scholar
Tan T, Wang W, Liu T, Zhong P, Conrow-Graham M, Tian X, et al. Neural circuits and activity dynamics underlying sex-specific effects of chronic social isolation stress. Cell Rep. 2021;34(12):108874. https://doi.org/10.1016/j.celrep.2021.108874.
Article
CAS
PubMed
Google Scholar
Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, et al. Natural neural projection dynamics underlying social behavior. Cell. 2014;157(7):1535–51. https://doi.org/10.1016/j.cell.2014.05.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Opendak M, Raineki C, Perry RE, Serrano PA, Wilson DA, Sullivan RM. Bidirectional control of infant rat social behavior via dopaminergic innervation of the basolateral amygdala ll ll Article Bidirectional control of infant rat social behavior via dopaminergic innervation of the basolateral amygdala. Neuron. 2021;109(24):4018-4035.e7. https://doi.org/10.1016/j.neuron.2021.09.041.
Article
CAS
PubMed
Google Scholar
Arakawa H. Dynamic regulation of oxytocin neuronal circuits in the sequential processes of prosocial behavior in rodent models. Curr Res Neurobiol. 2021;2:100011. https://doi.org/10.1016/j.crneur.2021.100011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wöhr M, Schwarting RKW. Affective communication in rodents: ultrasonic vocalizations as a tool for research on emotion and motivation. Cell Tissue Res. 2013;354:81–97. https://doi.org/10.1007/s00441-013-1607-9.
Article
PubMed
Google Scholar
Ko J. Neuroanatomical substrates of rodent social behavior: the medial prefrontal cortex and its projection patterns. Front Neural Circuits. 2017;11:1–16. https://doi.org/10.3389/fncir.2017.00041.
Article
CAS
Google Scholar
Liska A, Bertero A, Gomolka R, Sabbioni M, Galbusera A, Barsotti N, et al. Homozygous loss of autism-risk gene cntnap2 results in reduced local and long-range prefrontal functional connectivity. Cereb Cortex. 2018;28(4):1141–53. https://doi.org/10.1093/cercor/bhx022.
Article
PubMed
Google Scholar
Raam T, Hong W. Organization of neural circuits underlying social behavior: a consideration of the medial amygdala. Curr Opin Neurobiol. 2021;68:124–36. https://doi.org/10.1016/j.conb.2021.02.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keum S, Shin H. Review neural basis of observational fear learning: a potential model of affective empathy. Neuron. 2019;104(1):78–86. https://doi.org/10.1016/j.neuron.2019.09.013.
Article
CAS
PubMed
Google Scholar
Kim SW, Kim M, Shin HS. Affective empathy and prosocial behavior in rodents. Curr Opin Neurobiol. 2021;68:181–9. https://doi.org/10.1016/j.conb.2021.05.002.
Article
CAS
PubMed
Google Scholar
Panksepp JB, Lahvis GP. Rodent empathy and affective neuroscience. Neurosci Biobehav Rev. 2011;35(9):1864–75. https://doi.org/10.1016/j.neubiorev.2011.05.013.
Article
PubMed
PubMed Central
Google Scholar
Adolphs R. Review conceptual challenges and directions for social neuroscience. Neuron. 2010;65(6):752–67. https://doi.org/10.1016/j.neuron.2010.03.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cacioppo JT, Decety J. Challenges and opportunities in social neuroscience. Ann N Y Acad Sci. 2012;1224(1):162–73. https://doi.org/10.1111/j.1749-6632.2010.05858.x.
Article
Google Scholar
Ferretti V, Papaleo F. Understanding others: emotion recognition in humans and other animals. Genes Brain Behav. 2019;18(1):1–12. https://doi.org/10.1111/gbb.12544.
Google Scholar
Ferretti V, Maltese F, Contarini G, Nigro M, Bonavia A, Huang H, et al. Oxytocin signaling in the central amygdala modulates emotion discrimination in mice. Curr Biol. 2019;29(12):1938-1953.e6. https://doi.org/10.1016/j.cub.2019.04.070.
Article
CAS
PubMed
Google Scholar
Bicks LK, Koike H, Akbarian S, Morishita H. Prefrontal cortex and social cognition in mouse and man. Front Psychol. 2015;6:1–15. https://doi.org/10.3389/fpsyg.2015.01805.
Article
Google Scholar
Zilkha N, Sofer Y, Beny Y, Kimchi T. ScienceDirect From classic ethology to modern neuroethology: overcoming the three biases in social behavior research. Curr Opin Neurobiol. 2016;38:96–108. https://doi.org/10.1016/j.conb.2016.04.014.
Article
CAS
PubMed
Google Scholar
Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010;13(10):1161–9. https://doi.org/10.1038/nn.2647.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kas MJ, Glennon JC, Buitelaar J, Ey E, Biemans B, Crawley J, et al. Assessing behavioural and cognitive domains of autism spectrum disorders in rodents: current status and future perspectives. Psychopharmacology. 2014;231(6):1125–46. https://doi.org/10.1007/s00213-013-3268-5.
Article
CAS
PubMed
Google Scholar
Ellenbroek B, Youn J. Rodent models in neuroscience research: Is it a rat race? DMM Dis Model Mech. 2016;9(10):1079–87. https://doi.org/10.1242/dmm.026120.
Article
CAS
PubMed
Google Scholar
Silverman JL, Ellegood J. Behavioral and neuroanatomical approaches in models of neurodevelopmental disorders: opportunities for translation. Curr Opin Neurol. 2018;31(2):126–33. https://doi.org/10.1097/WCO.0000000000000537.
Article
PubMed
PubMed Central
Google Scholar
Silverman JL, Thurm A, Ethridge SB, Soller MM, Petkova SP, Abel T, et al. Reconsidering animal models used to study autism spectrum disorder: current state and optimizing future. Genes Brain Behav. 2022;21(5):1–13. https://doi.org/10.1111/gbb.12803.
Article
Google Scholar
Berg EL, Copping NA, Rivera JK, Pride MC, Careaga M, Bauman MD, et al. Developmental social communication deficits in the Shank3 rat model of phelan-mcdermid syndrome and autism spectrum disorder. Autism Res. 2018;11(4):587–601. https://doi.org/10.1002/aur.1925.
Article
PubMed
PubMed Central
Google Scholar
Kondrakiewicz K, Kostecki M, Szadzińska W, Knapska E. Ecological validity of social interaction tests in rats and mice. Genes Brain Behav. 2019;18(1):1–14. https://doi.org/10.1111/gbb.12525.
Article
Google Scholar
Kummer KK, Hofhansel L, Barwitz CM, Schardl A, Prast JM, Salti A, et al. Differences in social interaction- vs. cocaine reward in mouse vs. rat. Front Behav Neurosci. 2014;8:1–7. https://doi.org/10.3389/fnbeh.2014.00363.
Article
Google Scholar
Netser S, Meyer A, Magalnik H, Zylbertal A, de la Zerda SH, Briller M, et al. Distinct dynamics of social motivation drive differential social behavior in laboratory rat and mouse strains. Nat Commun. 2020;11(1):5908. https://doi.org/10.1038/s41467-020-19569-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crawley JN, Hill C, Carolina N. Designing mouse behavioral tasks relevant to autistic -like behaviors. Ment Retard Dev Disabil Res Rev. 2004;10:248–58. https://doi.org/10.1002/mrdd.20039.
Article
PubMed
Google Scholar
Langford DJ, Crager SE, Shehzad Z, Smith SB, Sotocinal SG, Levenstadt JS, et al. Social modulation of pain as evidence for empathy in mice. Science (80-). 2006;312(5782):1967–70. https://doi.org/10.1126/science.1128322.
Article
CAS
Google Scholar
Burkett JP, Andari E, Johnson ZV, Curry DC, De Waal FBM, Young LJ. Oxytocin-dependent consolation behavior in rodents. Science (80-). 2016;351(6271):375–8. https://doi.org/10.1126/science.aac4785.
Article
CAS
Google Scholar
Meyza KZ, Bartal IBA, Monfils MH, Panksepp JB, Knapska E. The roots of empathy: through the lens of rodent models. Neurosci Biobehav Rev. 2017;76:216–34. https://doi.org/10.1016/j.neubiorev.2016.10.028.
Article
CAS
PubMed
Google Scholar
Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci. 2010;11(7):490–502. https://doi.org/10.1038/nrn2851.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Chaumont F, Lemière N, Coqueran S, Bourgeron T, Ey E. LMT USV toolbox, a novel methodological approach to place mouse ultrasonic vocalizations in their behavioral contexts—a study in female and male C57BL/6J Mice and in Shank3 mutant females. Front Behav Neurosci. 2021;15:1–18. https://doi.org/10.3389/fnbeh.2021.735920.
Article
CAS
Google Scholar
Sacai H, Sakoori K, Konno K, Nagahama K, Suzuki H, Watanabe T, et al. Autism spectrum disorder-like behavior caused by reduced excitatory synaptic transmission in pyramidal neurons of mouse prefrontal cortex. Nat Commun. 2020;11(1):1–15. https://doi.org/10.1038/s41467-020-18861-3.
Article
CAS
Google Scholar
Yang M, Mahrt EJ, Lewis F, Foley G, Portmann T, Dolmetsch RE, et al. 16P11.2 Deletion syndrome mice display sensory and ultrasonic vocalization deficits during social interactions. Autism Res. 2015;8(5):507–21. https://doi.org/10.1002/aur.1465.
Article
PubMed
PubMed Central
Google Scholar
Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, Crawley JN. Translational mouse models of autism: advancing toward pharmacological therapeutics. Curr Top Behav Neurosci. 2016;28:1–52. https://doi.org/10.1007/7854_2015_5003.
CAS
PubMed
PubMed Central
Google Scholar
Grimsley JMS, Sheth S, Vallabh N, Grimsley CA, Bhattal J, Latsko M, et al. Contextual modulation of vocal behavior in mouse: newly identified 12 kHz “Mid-frequency” vocalization emitted during restraint. Front Behav Neurosci. 2016;10:1–14. https://doi.org/10.3389/fnbeh.2016.00038.
Article
CAS
Google Scholar
Wittmann MK, Lockwood PL, Rushworth MFS. Neural mechanisms of social cognition in primates. Annu Rev Neurosci. 2018;41:99–118. https://doi.org/10.1146/annurev-neuro-080317-061450.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carcea I, Froemke RC. Biological mechanisms for observational learning. Curr Opin Neurobiol. 2019;54:178–85. https://doi.org/10.1016/j.conb.2018.11.008.
Article
CAS
PubMed
Google Scholar
Fernández M, Mollinedo-Gajate I, Peñagarikano O. Neural circuits for social cognition: implications for autism. Neuroscience. 2018;370:148–62. https://doi.org/10.1016/j.neuroscience.2017.07.013.
Article
CAS
PubMed
Google Scholar
Kohl J, Autry AE, Dulac C. The neurobiology of parenting: a neural circuit perspective. BioEssays. 2018;39(1):1–11. https://doi.org/10.1002/bies.201600159.
Google Scholar
Li Y, Dulac C. Neural coding of sex-specific social information in the mouse brain. Curr Opin Neurobiol. 2018;53:120–30. https://doi.org/10.1016/j.conb.2018.07.005.
Article
CAS
PubMed
Google Scholar
Lischinsky JE, Lin D. Neural mechanisms of aggression across species. Nat Neurosci. 2020. https://doi.org/10.1038/s41593-020-00715-2.
Article
PubMed
Google Scholar
Matthews GA, Tye KM. Neural mechanisms of social homeostasis. Ann N Y Acad Sci. 2020;1457(1):5–25. https://doi.org/10.1111/nyas.14016.
Article
Google Scholar
Zhou T, Sandi C, Hu H. Advances in understanding neural mechanisms of social dominance. Curr Opin Neurobiol. 2018;49:99–107. https://doi.org/10.1016/j.conb.2018.01.006.
Article
CAS
PubMed
Google Scholar
Fakhro KA. Genomics of autism. Adv Neurobiol. 2020;24:83–96. https://doi.org/10.1007/978-3-030-30402-7_3.
Article
PubMed
Google Scholar
De Rubeis S, Buxbaum JD. Recent advances in the genetics of autism spectrum disorder. Curr Neurol Neurosci Rep. 2015;15(6):1–9. https://doi.org/10.1007/s11910-015-0553-1.
Article
CAS
Google Scholar
Kazdoba TM, Leach PT, Crawley JN. Behavioral phenotypes of genetic mouse models of autism. Genes Brain Behav. 2016;15(1):7–26. https://doi.org/10.1111/gbb.12256.
Article
CAS
PubMed
Google Scholar
Peleh T, Ike KGO, Wams EJ, Lebois EP, Hengerer B. The reverse translation of a quantitative neuropsychiatric framework into preclinical studies: focus on social interaction and behavior. Neurosci Biobehav Rev. 2019;97:96–111. https://doi.org/10.1016/j.neubiorev.2018.07.018.
Article
PubMed
Google Scholar
Salyha Y. Animal models of autism spectrum disorders and behavioral techniques of their examination. Neurophysiology. 2018. https://doi.org/10.1007/s11062-017-9613-2.
Google Scholar
Leach T, Crawley JN. Behavioral phenotypes of genetic mouse models of autism. Genes Brain Behav. 2016;15:7–26. https://doi.org/10.1111/gbb.12256.
Article
CAS
PubMed
Google Scholar
Rein B, Ma K, Yan Z. A standardized social preference protocol for measuring social deficits in mouse models of autism. Nat Protoc. 2020. https://doi.org/10.1038/s41596-020-0382-9.
Article
PubMed
PubMed Central
Google Scholar
Kaidanovich-beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR. Assessment of social interaction behaviors. J Vis Exp. 2011. https://doi.org/10.3791/2473.
Article
PubMed
PubMed Central
Google Scholar
Moy SS, Nadler JJ, Perez A. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 2004;3:287–302. https://doi.org/10.1111/j.1601-1848.2004.00076.x.
Article
CAS
PubMed
Google Scholar
Pearson BL, Defensor EB, Blanchard DC, Blanchard RJ. C57BL/6J mice fail to exhibit preference for social novelty in the three-chamber apparatus. Behav Brain Res. 2010;213(2):189–94. https://doi.org/10.1016/j.bbr.2010.04.054.
Article
PubMed
PubMed Central
Google Scholar
Guo B, Chen J, Chen Q, Ren K, Feng D, Mao H, et al. Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice. Nat Neurosci. 2019;22(8):1223–34. https://doi.org/10.1038/s41593-019-0445-9.
Article
CAS
PubMed
Google Scholar
Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM, et al. Human Gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell. 2019;177(6):1600-1618.e17. https://doi.org/10.1016/j.cell.2019.05.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phenotypes IT, Orefice LL, Mosko JR, Morency DT, Lehtinen MK, Feng G, et al. Targeting peripheral somatosensory neurons to article targeting peripheral somatosensory neurons to improve tactile-related phenotypes in ASD models. Cell. 2019;178(4):867-886.e24. https://doi.org/10.1016/j.cell.2019.07.024.
Article
CAS
Google Scholar
Peñagarikano O, Lázaro MT, Lu XH, Gordon A, Dong H, Lam HA, et al. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci Transl Med. 2015. https://doi.org/10.1126/scitranslmed.3010257.
Article
PubMed
PubMed Central
Google Scholar
Jackson MR, Loring KE, Homan CC, Thai MHN, Määttänen L, Arvio M, et al. Heterozygous loss of function of IQSEC2/Iqsec2 leads to increased activated Arf6 and severe neurocognitive seizure phenotype in females. Life Sci Alliance. 2019;2(4):1–18. https://doi.org/10.26508/lsa.201900386.
Article
Google Scholar
Anthony TE, Dee N, Bernard A, Lerchner W, Heintz N, Anderson DJ. Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell. 2014;156(3):522–36. https://doi.org/10.1016/j.cell.2013.12.040.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers EJ, Jada R, Schragenheim-Rozales K, Sah M, Cortes M, Florence M, et al. An IQSEC2 mutation associated with intellectual disability and autism results in decreased surface. AMPA Recept. 2019;12:1–18. https://doi.org/10.3389/fnmol.2019.00043.
CAS
Google Scholar
Gur TL, Vadodkar A, Rajasekera T, Allen J, Niraula A, Godbout J, et al. Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male off spring. Behav Brain Res. 2019;359:886–94. https://doi.org/10.1016/j.bbr.2018.06.025.
Article
PubMed
Google Scholar
Grundwald NJ, Ben DP, Brunton PJ, Brunton PJ. Sex-dependent effects of prenatal stress on social memory in rats: a role for differential expression of central vasopressin-1a receptors neuroendocrinology. J Neuroendocrinol. 2016. https://doi.org/10.1111/jne.12343.
Article
PubMed
PubMed Central
Google Scholar
Sankoorikal GMV, Kaercher KA, Boon CJ, Lee JK, Brodkin ES. A mouse model system for genetic analysis of sociability: C57BL/6J versus BALB/cJ inbred mouse strains. Biol Psychiatry. 2006;59(5):415–23. https://doi.org/10.1016/j.biopsych.2005.07.026.
Article
CAS
PubMed
Google Scholar
Netser S, Meyer A, Magalnik H, Zylbertal A, Haskal S, Zerda D, et al. Distinct dynamics of social motivation drive differential social behavior in laboratory rat and mouse strains. Nat Commun. 2020;11(1):5908. https://doi.org/10.1038/s41467-020-19569-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsumoto M, Yoshida M, Jayathilake BW, Inutsuka A, Nishimori K, Takayanagi Y, et al. Indispensable role of the oxytocin receptor for allogrooming toward socially distressed cage mates in female mice. J Neuroendocrinol. 2021. https://doi.org/10.1111/jne.12980.
Article
PubMed
PubMed Central
Google Scholar
Haskal de la Zerda S, Netser S, Magalnik H, Wagner S. Impaired sex preference, but not social and social novelty preferences, following systemic blockade of oxytocin receptors in adult male mice. Psychoneuroendocrinology. 2020;116:104676. https://doi.org/10.1016/j.psyneuen.2020.104676.
Article
CAS
PubMed
Google Scholar
Jabarin R, Levy N, Abergel Y, Berman JH, Zag A, Netser S, et al. Pharmacological modulation of AMPA receptors rescues specific impairments in social behavior associated with the A350V Iqsec2 mutation. Transl Psychiatry. 2021;11(1):1–11. https://doi.org/10.1038/s41398-021-01347-1.
Article
CAS
Google Scholar
Kim J, Park K, Kang RJ, Gonzales ELT, Kim DG, Oh HA, et al. Pharmacological modulation of AMPA receptor rescues social impairments in animal models of autism. Neuropsychopharmacology. 2018. https://doi.org/10.1038/s41386-018-0098-5.
PubMed
PubMed Central
Google Scholar
Netser S, Haskal S, Magalnik H, Wagner S. A novel system for tracking social preference dynamics in mice reveals sex- and strain-specific characteristics. Mol Autism. 2017;8(1):1–14. https://doi.org/10.1186/s13229-017-0169-1.
Article
Google Scholar
Fairless AH, Shah RY, Guthrie AJ, Li H, Brodkin ES. Deconstructing sociability, an autism-relevant phenotype, in mouse models. Anat Rec. 2011;294(10):1713–25.
Article
Google Scholar
Levy DR, Tamir T, Kaufman M, Parabucki A, Weissbrod A, Schneidman E, et al. Dynamics of social representation in the mouse prefrontal cortex. Nat Neurosci. 2019;22(12):2013–22. https://doi.org/10.1038/s41593-019-0531-z.
Article
CAS
PubMed
Google Scholar
Sharon G, Cruz NJ, Kang D, Geschwind DH, Krajmalnik-brown R, Mazmanian SK, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice article human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell. 2019;177(6):1600-1618.e17. https://doi.org/10.1016/j.cell.2019.05.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsieh LS, Wen JH, Miyares L, Lombroso PJ, Bordey A. Outbred CD1 mice are as suitable as inbred C57BL/6J mice in performing social tasks. Neurosci Lett. 2017;637:142–7. https://doi.org/10.1016/j.neulet.2016.11.035.
Article
CAS
PubMed
Google Scholar
Yang M, Silverman JL, Crawley JN. Automated three-chambered social approach task for mice. Curr Protoc Neurosci. 2011;56:8–26. https://doi.org/10.1002/0471142301.ns0826s56.
Article
Google Scholar
Won H, Lee HR, Gee HY, Mah W, Kim JI, Lee J, et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature. 2012;486(7402):261–5. https://doi.org/10.1038/nature11208.
Article
CAS
PubMed
Google Scholar
Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A, et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature. 2012;486(7402):256–60. https://doi.org/10.1038/nature11015.
Article
CAS
PubMed
Google Scholar
Brunner D, Kabitzke P, He D, Cox K, Thiede L, Hanania T, et al. Comprehensive analysis of the 16p11.2 deletion and null cntnap2 mouse models of autism spectrum disorder. PLoS ONE. 2015;10(8):1–39. https://doi.org/10.1371/journal.pone.0134572.
Article
CAS
Google Scholar
Portmann T, Yang M, Mao R, Panagiotakos G, Ellegood J, Dolen G, et al. Behavioral abnormalities and circuit defects in the basal ganglia of a mouse model of 16p11.2 deletion syndrome. Cell Rep. 2014;7(4):1077–92. https://doi.org/10.1016/j.celrep.2014.03.036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee DK, Li SW, Bounni F, Friedman G, Jamali M, Strahs L, et al. Reduced sociability and social agency encoding in adult Shank3-mutant mice are restored through gene re-expression in real time. Nat Neurosci. 2021;24(9):1243–55. https://doi.org/10.1038/s41593-021-00888-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Selimbeyoglu A, Kim CK, Inoue M, Lee SY, Hong ASO, Kauvar I, et al. Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci Transl Med. 2017;9(401):eaah6733. https://doi.org/10.1126/scitranslmed.aah6733.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Rein B, Zhang F, Tan T, Zhong P, Qin L, et al. Chemogenetic activation of prefrontal cortex rescues synaptic and behavioral deficits in a mouse model of 16p11.2 deletion syndrome. J Neurosci. 2018;38(26):5939–48. https://doi.org/10.1523/JNEUROSCI.0149-18.2018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stoppel LJ, Kazdoba TM, Schaffler MD, Preza AR, Heynen A, Crawley JN, et al. R-baclofen reverses cognitive deficits and improves social interactions in two lines of 16p11.2 deletion mice. Neuropsychopharmacology. 2018;43(3):513–24. https://doi.org/10.1038/npp.2017.236.
Article
CAS
PubMed
Google Scholar
Kim DG, Gonzales EL, Kim S, Kim Y, Adil KJ, Jeon SJ, et al. Social interaction test in home cage as a novel and ethological measure of social behavior in mice. Exp Neurobiol. 2019;28(2):247–60. https://doi.org/10.5607/en.2019.28.2.247.
Article
PubMed
PubMed Central
Google Scholar
Ricceri L, Moles A, Crawley J. Behavioral phenotyping of mouse models of neurodevelopmental disorders: relevant social behavior patterns across the life span. Behav Brain Res. 2007;176:40–52. https://doi.org/10.1016/j.bbr.2006.08.024.
Article
PubMed
Google Scholar
Mogil JS. Mice are people too: increasing evidence for cognitive, emotional and social capabilities in laboratory rodents. Can Psychol. 2019;60(1):14–20. https://doi.org/10.1037/cap0000166.
Article
Google Scholar
Forkosh O, Karamihalev S, Roeh S, Alon U, Anpilov S, Touma C, et al. Identity domains capture individual differences from across the behavioral repertoire. Nat Neurosci. 2019;22(12):2023–8. https://doi.org/10.1038/s41593-019-0516-y.
Article
CAS
PubMed
Google Scholar
Ramos A. Animal models of anxiety: do I need multiple tests? Trends Pharmacol Sci. 2008;29(10):493–8. https://doi.org/10.1016/j.tips.2008.07.005.
Article
CAS
PubMed
Google Scholar
Carobrez AP, Bertoglio LJ. Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev. 2005;29(8):1193–205. https://doi.org/10.1016/j.neubiorev.2005.04.017.
Article
CAS
PubMed
Google Scholar
Hogg S. A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav. 1996;54(1):21–30. https://doi.org/10.1016/0091-3057(95)02126-4.
Article
CAS
PubMed
Google Scholar
Sudakov SK, Nazarova GA, Alekseeva EV, Bashkatova VG. Estimation of the level of anxiety in rats: differences in results of open-field test, elevated plus-maze test, and Vogel’s conflict test. Bull Exp Biol Med. 2013;155(3):295–7. https://doi.org/10.1007/s10517-013-2136-y.
Article
CAS
PubMed
Google Scholar
Id ACT, Id SK, Roberts C, Finnegan EM, Paul S, Planas-sitj I, et al. Measuring affect-related cognitive bias: do mice in opposite affective states react differently to negative and positive stimuli? PLoS ONE. 2019;14(12):e0226438. https://doi.org/10.1371/journal.pone.0226438.
Article
CAS
Google Scholar
Krakenberg V, Siestrup S, Palme R, Kaiser S, Sachser N, Richter SH. Effects of different social experiences on emotional state in mice. Sci Rep. 2020;10:1–12. https://doi.org/10.1038/s41598-020-71994-9.
Article
CAS
Google Scholar
Anderson DJ, Adolphs R. A framework for studying emotions across species. Cell. 2014;157(1):187–200. https://doi.org/10.1016/j.cell.2014.03.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zych AD, Gogolla N. Expressions of emotions across species. Curr Opin Neurobiol. 2021;68:57–66. https://doi.org/10.1016/j.conb.2021.01.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adolphs R. How should neuroscience study emotions? By distinguishing emotion states, concepts, and experiences. Soc Cogn Affect Neurosci. 2017;12(1):24–31. https://doi.org/10.1093/scan/nsw153.
Article
PubMed
Google Scholar
de Vere AJ, Kuczaj SA. Where are we in the study of animal emotions? Wiley Interdiscip Rev Cogn Sci. 2016;7(5):354–62. https://doi.org/10.1002/wcs.1399.
Article
PubMed
Google Scholar
Mendl M, Burman OHP, Parker RMA, Paul ES. Cognitive bias as an indicator of animal emotion and welfare: emerging evidence and underlying mechanisms. Appl Anim Behav Sci. 2009;118(3–4):161–81. https://doi.org/10.1016/j.applanim.2009.02.023.
Article
Google Scholar
Nguyen HAT, Guo C, Homberg JR. Cognitive bias under adverse and rewarding conditions: a systematic review of rodent studies. Front Behav Neurosci. 2020;14:1–12. https://doi.org/10.3389/fnbeh.2020.00014.
Article
CAS
Google Scholar
Simola N, Granon S. Ultrasonic vocalizations as a tool in studying emotional states in rodent models of social behavior and brain disease. Neuropharmacology. 2019. https://doi.org/10.1016/j.neuropharm.2018.11.008.
Article
PubMed
Google Scholar
Niemczura AC, Grimsley JM, Kim C, Alkhawaga A, Poth A, Carvalho A, et al. Physiological and behavioral responses to vocalization playback in mice. Front Behav Neurosci. 2020;14:1–12. https://doi.org/10.3389/fnbeh.2020.00155.
Article
CAS
Google Scholar
Sterley TL, Baimoukhametova D, Füzesi T, Zurek AA, Daviu N, Rasiah NP, et al. Social transmission and buffering of synaptic changes after stress. Nat Neurosci. 2018;21(3):393–403. https://doi.org/10.1038/s41593-017-0044-6.
Article
CAS
PubMed
Google Scholar
Arakawa H, Blanchard DC, Arakawa K, Dunlap C, Blanchard RJ. Scent marking behavior as an odorant communication in mice. Neurosci Biobehav Rev. 2008;32:1236–48. https://doi.org/10.1016/j.neubiorev.2008.05.012.
Article
PubMed
PubMed Central
Google Scholar
Demir E, Li K, Bobrowski-Khoury N, Sanders JI, Beynon RJ, Hurst JL, et al. The pheromone darcin drives a circuit for innate and reinforced behaviours. Nature. 2020;578:137–41. https://doi.org/10.1038/s41586-020-1967-8.
Article
CAS
PubMed
Google Scholar
Dolensek N, Gehrlach DA, Klein AS, Gogolla N. Facial expressions of emotion states and their neuronal correlates in mice. Science (80-). 2020;368(6486):89–94. https://doi.org/10.1126/science.aaz9468.
Article
CAS
Google Scholar
Scheggia D, Papaleo F. Social neuroscience: rats can be considerate to others. Curr Biol. 2020;30(6):R274–6. https://doi.org/10.1016/j.cub.2020.01.093.
Article
CAS
PubMed
Google Scholar
Hernandez-Lallement J, Attah AT, Soyman E, Pinhal CM, Gazzola V, Keysers C. Harm to others acts as a negative reinforcer in rats. Curr Biol. 2020;30(6):949-961.e7. https://doi.org/10.1016/j.cub.2020.01.017.
Article
CAS
PubMed
Google Scholar
Bartal IB-A, Decety J, Mason P. Empathy and pro-social behavior in rats. Science (80-). 2011;334(6061):1427–30. https://doi.org/10.1126/science.1210789.
Article
CAS
Google Scholar
Dolivo V, Taborsky M. Norway rats reciprocate help according to the quality of help they received. Biol Lett. 2015. https://doi.org/10.1098/rsbl.2014.0959.
Article
PubMed
PubMed Central
Google Scholar
Rennie SM, Costa DF, Moita MA, Rennie SM, Costa DF, Moita MA, et al. Prosocial choice in rats depends on food-seeking behavior displayed by recipients. Curr Biol. 2015;25:1736–45. https://doi.org/10.1016/j.cub.2015.05.018.
Article
CAS
PubMed
Google Scholar
Smith ML, Asada N, Malenka RC. Anterior cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia. Science (80-). 2021;371(6525):153–9. https://doi.org/10.1126/science.abe3040.
Article
CAS
Google Scholar
Sivaselvachandran S, Acland EL, Abdallah S, Martin LJ. Behavioral and mechanistic insight into rodent empathy. Neurosci Biobehav Rev. 2018;91:130–7. https://doi.org/10.1016/j.neubiorev.2016.06.007.
Article
PubMed
Google Scholar
Sterley TL, Bains JS. Social communication of affective states. Curr Opin Neurobiol. 2021;68:44–51. https://doi.org/10.1016/j.conb.2020.12.007.
Article
CAS
PubMed
Google Scholar
Kemp J, Després O, Sellal F, Dufour A. Theory of mind in normal ageing and neurodegenerative pathologies. Ageing Res Rev. 2012;11(2):199–219. https://doi.org/10.1016/j.arr.2011.12.001.
Article
PubMed
Google Scholar
Scheggia D, Managò F, Maltese F, Bruni S, Nigro M, Dautan D, et al. Somatostatin interneurons in the prefrontal cortex control affective state discrimination in mice. Nat Neurosci. 2020;23(1):47–60. https://doi.org/10.1038/s41593-019-0551-8.
Article
CAS
PubMed
Google Scholar
Shackman AJ, Fox AS, Seminowicz DA, Program CS. The cognitive-emotional brain: opportunities [corrected] and challenges for understanding neuropsychiatric disorders. Behav Brain Sci. 2015;38:e86. https://doi.org/10.1017/S0140525X14001010.
Article
PubMed
PubMed Central
Google Scholar
Damasio A, Carvalho GB. The nature of feelings: evolutionary and neurobiological origins. Nat Rev Neurosci. 2013;14:143–52. https://doi.org/10.1038/nrn3403.
Article
CAS
PubMed
Google Scholar
De Gelder B. Towards the neurobiology of emotional body language. Nat Rev Neurosci. 2006;7(3):242–9. https://doi.org/10.1038/nrn1872.
Article
CAS
PubMed
Google Scholar
Steimer T. The biology of fear- and anxiety-related behaviors. Dialogues Clin Neurosci. 2002;4(3):231–49. https://doi.org/10.31887/DCNS.2002.4.3/tsteimer.
Article
PubMed
PubMed Central
Google Scholar
De Chaumont F, Coura RDS, Serreau P, Cressant A, Chabout J, Granon S, et al. Computerized video analysis of social interactions in mice. Nat Methods. 2012;9(4):410–7. https://doi.org/10.1038/nmeth.1924.
Article
CAS
PubMed
Google Scholar
Geuther BQ, Deats SP, Fox KJ, Murray SA, Braun RE, White JK, et al. Robust mouse tracking in complex environments using neural networks. Commun Biol. 2019;2(1):1–11. https://doi.org/10.1038/s42003-019-0362-1.
Article
Google Scholar
Kabra M, Robie AA, Rivera-Alba M, Branson S, Branson K. JAABA: interactive machine learning for automatic annotation of animal behavior. Nat Methods. 2013;10(1):64–7. https://doi.org/10.1038/nmeth.2281.
Article
CAS
PubMed
Google Scholar
Segalin C, Williams J, Karigo T, Hui M, Zelikowsky M, Sun JJ, et al. The Mouse Action Recognition System (MARS) software pipeline for automated analysis of social behaviors in mice. Elife. 2021;10:1–35. https://doi.org/10.7554/eLife.63720.
Article
Google Scholar
Panadeiro V, Rodriguez A, Henry J, Wlodkowic D, Andersson M. Applications: current features and limitations. Lab Anim (NY). 2021. https://doi.org/10.1038/s41684-021-00811-1.
Article
Google Scholar
Farah R, Langlois JMP, Bilodeau GA. Catching a rat by its edglets. IEEE Trans Image Process. 2013;22(2):668–78. https://doi.org/10.1109/TIP.2012.2221726.
Article
PubMed
Google Scholar
Pereira TD, Shaevitz JW, Murthy M. Quantifying behavior to understand the brain. Nat Neurosci. 2020;23(12):1537–49. https://doi.org/10.1038/s41593-020-00734-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamanaka O, Takeuchi R. UMATracker: an intuitive image-based tracking platform. J Exp Biol. 2018;221(16):1–5. https://doi.org/10.1242/jeb.182469.
Google Scholar
Krynitsky J, Legaria AA, Pai JJ, Garmendia-Cedillos M, Salem G, Pohida T, et al. Rodent arena tracker (rat): a machine vision rodent tracking camera and closed loop control system. eNeuro. 2020;7(3):1–9. https://doi.org/10.1523/ENEURO.0485-19.2020.
Article
Google Scholar
Samson AL, Ju L, Kim HA, Zhang SR, Lee JAA, Sturgeon SA, et al. MouseMove: an open source program for semi-automated analysis of movement and cognitive testing in rodents. Sci Rep. 2015;5:1–11. https://doi.org/10.1038/srep16171.
Article
CAS
Google Scholar
Hewitt BM, Yap MH, Hodson-Tole EF, Kennerley AJ, Sharp PS, Grant RA. A novel automated rodent tracker (ART), demonstrated in a mouse model of amyotrophic lateral sclerosis. J Neurosci Methods. 2018;300:147–56. https://doi.org/10.1016/j.jneumeth.2017.04.006.
Article
PubMed
Google Scholar
Crispim Junior CF, Pederiva CN, Bose RC, Garcia VA, Lino-de-Oliveira C, Marino-Neto J. ETHOWATCHER: validation of a tool for behavioral and video-tracking analysis in laboratory animals. Comput Biol Med. 2012;42(2):257–64. https://doi.org/10.1016/j.compbiomed.2011.12.002.
Article
PubMed
Google Scholar
Patel TP, Gullotti DM, Hernandez P, O’Brien WT, Capehart BP, Morrison B, et al. An open-source toolbox for automated phenotyping of mice in behavioral tasks. Front Behav Neurosci. 2014;8:1–16. https://doi.org/10.3389/fnbeh.2014.00349.
Article
Google Scholar
Buccino AP, Lepperød ME, Dragly SA, Hafliger P, Fyhn M, Hafting T. Open source modules for tracking animal behavior and closed-loop stimulation based on Open Ephys and Bonsai. J Neural Eng. 2018. https://doi.org/10.1088/1741-2552/aacf45.
Article
PubMed
Google Scholar
Wesson DW. Sniffing behavior communicates social hierarchy. Curr Biol. 2013;23:575–80. https://doi.org/10.1016/j.cub.2013.02.012.
Article
CAS
PubMed
Google Scholar
Rodriguez A, Zhang H, Klaminder J, Brodin T, Andersson M. ToxId: an efficient algorithm to solve occlusions when tracking multiple animals. Sci Rep. 2017;7(1):1–8. https://doi.org/10.1038/s41598-017-15104-2.
Article
CAS
Google Scholar
Peleh T, Bai X, Kas MJH, Hengerer B. RFID-supported video tracking for automated analysis of social behaviour in groups of mice. J Neurosci Methods. 2019;325:108323. https://doi.org/10.1016/j.jneumeth.2019.108323.
Article
PubMed
Google Scholar
Ohayon S, Avni O, Taylor AL, Perona P, Roian Egnor SE. Automated multi-day tracking of marked mice for the analysis of social behaviour. J Neurosci Methods. 2013;219(1):10–9. https://doi.org/10.1016/j.jneumeth.2013.05.013.
Article
PubMed
PubMed Central
Google Scholar
Chaumont F de, Ey E, Torquet N, Lagache T, Dallongeville S, Imbert A, et al. Live mouse tracker: real-time behavioral analysis of groups of mice. bioRxiv. 2018;345132. https://doi.org/10.1101/345132.
Matsumoto J, Urakawa S, Takamura Y, Malcher-Lopes R, Hori E, Tomaz C, et al. A 3D-video-based computerized analysis of social and sexual interactions in rats. PLoS ONE. 2013;8(10):e78460. https://doi.org/10.1371/journal.pone.0078460.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hrabovska SV, Salyha YT. Animal models of autism spectrum disorders and behavioral techniques of their examination. Neurophysiology. 2016;48(5):380–8. https://doi.org/10.1007/s11062-017-9613-2.
Article
Google Scholar
Shemesh Y, Sztainberg Y, Forkosh O, Shlapobersky T, Chen A, Schneidman E. High-order social interactions in groups of mice. Elife. 2013;2013(2):1–19. https://doi.org/10.7554/eLife.00759.
Google Scholar
Weissbrod A, Shapiro A, Vasserman G, Edry L, Dayan M, Yitzhaky A, et al. Automated long-term tracking and social behavioural phenotyping of animal colonies within a semi-natural environment. Nat Commun. 2013. https://doi.org/10.1038/ncomms3018.
Article
PubMed
Google Scholar
Romero-Ferrero F, Bergomi MG, Hinz RC, Heras FJH, de Polavieja GG. Idtracker.Ai: tracking all individuals in small or large collectives of unmarked animals. Nat Methods. 2019;16(2):179–82. https://doi.org/10.1038/s41592-018-0295-5.
Article
CAS
PubMed
Google Scholar
Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat Neurosci. 2018;21(9):1281–9. https://doi.org/10.1038/s41593-018-0209-y.
Article
CAS
PubMed
Google Scholar
Nilsson SRO, Goodwin NL, Choong JJ, Hwang S, Wright HR, Norville ZC, et al. Simple Behavioral Analysis (SimBA)—an open source toolkit for computer classification of complex social behaviors in experimental animals. bioRxiv. 2020. https://doi.org/10.1101/2020.04.19.049452.
Rodriguez A, Zhang H, Klaminder J, Brodin T, Andersson PL, Andersson M. ToxTrac: a fast and robust software for tracking organisms. Methods Ecol Evol. 2018;9(3):460–4. https://doi.org/10.1111/2041-210X.12874.
Article
Google Scholar
Wöhr M, Engelhardt KA, Seffer D, Sungur AÖ, Schwarting RKW. Acoustic communication in rats: effects of social experiences on ultrasonic vocalizations as socio-affective signals. Curr Top Behav Neurosci. 2017;30:67–89. https://doi.org/10.1007/7854_2015_410.
Article
PubMed
Google Scholar
Brudzynski SM. Ethotransmission: communication of emotional states through ultrasonic vocalization in rats. Curr Opin Neurobiol. 2013;23:310–7. https://doi.org/10.1016/j.conb.2013.01.014.
Article
CAS
PubMed
Google Scholar
Sirotin YB, Costa ME, Laplagne DA. Rodent ultrasonic vocalizations are bound to active sniffing behavior. Front Behav Neurosci. 2014;8:1–12. https://doi.org/10.3389/fnbeh.2014.00399.
Article
Google Scholar
Hartmann K, Brecht M. A functionally and anatomically bipartite vocal pattern generator in the rat brain stem. iScience. 2020;23(12):101804. https://doi.org/10.1016/j.isci.2020.101804.
Article
PubMed
PubMed Central
Google Scholar
Panksepp JB, Jochman KA, Kim JU, Koy JK, Wilson ED, Chen Q, et al. Affiliative behavior, ultrasonic communication and social reward are influenced by genetic variation in adolescent mice. PLoS ONE. 2007;2(4):e351. https://doi.org/10.1371/journal.pone.0000351.
Article
PubMed
PubMed Central
Google Scholar
Lahvis GP, Alleva E, Scattoni ML. Translating mouse vocalizations: prosody and frequency modulation. Genes Brain Behav. 2011;10(1):4–16. https://doi.org/10.1111/j.1601-183X.2010.00603.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heckman J, McGuinness B, Celikel T, Englitz B. Determinants of the mouse ultrasonic vocal structure and repertoire. Neurosci Biobehav Rev. 2016;65:313–25. https://doi.org/10.1016/j.neubiorev.2016.03.029.
Article
PubMed
Google Scholar
Warren MR, Spurrier MS, Roth ED, Neunuebel JP. Sex differences in vocal communication of freely interacting adult mice depend upon behavioral context. PLoS ONE. 2018;13(9):1–22. https://doi.org/10.1371/journal.pone.0204527.
Article
CAS
Google Scholar
Zala SM, Reitschmidt D, Noll A, Balazs P, Penn DJ. Sex-dependent modulation of ultrasonic vocalizations in house mice (Mus musculus musculus). PLoS ONE. 2017;12(12):4–7. https://doi.org/10.1371/journal.pone.0188647.
Article
CAS
Google Scholar
Burke K, Screven LA, Dent ML. CBA/CaJ mouse ultrasonic vocalizations depend on prior social experience. PLoS ONE. 2018;13(6):1–17. https://doi.org/10.1371/journal.pone.0197774.
Article
CAS
Google Scholar
Premoli M, Petroni V, Bulthuis R, Bonini SA, Pietropaolo S, Jarvis ED. Ultrasonic vocalizations in adult C57BL/6J Mice: the role of sex differences and repeated testing. Front Behav Neurosci. 2022;16:1–17. https://doi.org/10.3389/fnbeh.2022.883353.
Article
Google Scholar
Arriaga G, Zhou EP, Jarvis ED. Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds. PLoS ONE. 2012;7(10):e46610. https://doi.org/10.1371/journal.pone.0046610.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chabout J, Sarkar A, Dunson DB, Jarvis ED. Male mice song syntax depends on social contexts and influences female preferences. Behav Neurosci. 2015;9:76. https://doi.org/10.3389/fnbeh.2015.00076.
Google Scholar
Zhao X, Ziobro P, Pranic NM, Chu S, Rabinovich S, Chan W, et al. Sex- And context-dependent effects of acute isolation on vocal and non-vocal social behaviors in mice. PLoS ONE. 2021;16:1–17. https://doi.org/10.1371/journal.pone.0255640.
Article
CAS
Google Scholar
Van Segbroeck M, Knoll AT, Levitt P, Narayanan S. MUPET—mouse ultrasonic profile extraction: a signal processing tool for rapid and unsupervised analysis of ultrasonic vocalizations. Neuron. 2017;94(3):465-485.e5. https://doi.org/10.1016/j.neuron.2017.04.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holy TE, Guo Z. Ultrasonic songs of male mice. PLoS Biol. 2005;3(12):e386. https://doi.org/10.1371/journal.pbio.0030386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Portfors CV. Types and functions of ultrasonic vocalizations in laboratory rats and mice. J Am Assoc Lab Anim Sci. 2007;46(1):28–34.
CAS
PubMed
Google Scholar
Hanson JL, Hurley LM. Female presence and estrous state influence mouse ultrasonic courtship vocalizations. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0040782.
Article
PubMed
PubMed Central
Google Scholar
Chabout J, Serreau P, Ey E, Bellier L, Aubin T, Bourgeron T, et al. Adult male mice emit context-specific ultrasonic vocalizations that are modulated by prior isolation or group rearing environment. PLoS ONE. 2012;7(1):1–9. https://doi.org/10.1371/journal.pone.0029401.
Article
CAS
Google Scholar
Premoli M, Memo M, Bonini S. Ultrasonic vocalizations in mice: relevance for ethologic and neurodevelopmental disorders studies. Neural Regen Res. 2021;16(6):1158–67. https://doi.org/10.4103/1673-5374.300340.
Article
PubMed
Google Scholar
Ivanenko A, Watkins P, van Gerven MAJ, Hammerschmidt K, Englitz B. Classifying sex and strain from mouse ultrasonic vocalizations using deep learning. PLoS Comput Biol. 2020;16(6):1–27. https://doi.org/10.1371/journal.pcbi.1007918.
Article
CAS
Google Scholar
Sangiamo DT, Warren MR, Neunuebel JP. Ultrasonic signals associated with different types of social behavior of mice. Nat Neurosci. 2020;23(3):411–22. https://doi.org/10.1038/s41593-020-0584-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lefebvre E, Granon S, Chauveau F. Social context increases ultrasonic vocalizations during restraint in adult mice. Anim Cogn. 2020;23(2):351–9. https://doi.org/10.1007/s10071-019-01338-2.
Article
CAS
PubMed
Google Scholar
Scattoni ML, Ricceri L, Crawley JN. Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters. Genes Brain Behav. 2011;10(1):44–56. https://doi.org/10.1111/j.1601-183X.2010.00623.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hammerschmidt K, Reisinger E, Westekemper K, Ehrenreich L, Strenzke N, Fischer J. Mice do not require auditory input for the normal development of their ultrasonic vocalizations. BMC Neurosci. 2012;13(1):40. https://doi.org/10.1186/1471-2202-13-40.
Article
PubMed
PubMed Central
Google Scholar
Roullet FI, Wöhr M, Crawley JN. Female urine-induced male mice ultrasonic vocalizations, but not scent-marking, is modulated by social experience. Behav Brain Res. 2011;216(1):19–28. https://doi.org/10.1016/j.bbr.2010.06.004.
Article
PubMed
Google Scholar
Keesom SM, Finton CJ, Sell GL, Hurley LM. Early-life social isolation influences mouse ultrasonic vocalizations during male-male social encounters. PLoS ONE. 2017;12(1):e0169705. https://doi.org/10.1371/journal.pone.0169705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tschida K, Michael V, Takatoh J, Han BX, Zhao S, Sakurai K, et al. A specialized neural circuit gates social vocalizations in the mouse. Neuron. 2019;103(3):459-472.e4. https://doi.org/10.1016/j.neuron.2019.05.025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hammerschmidt K, Radyushkin K, Ehrenreich H, Fischer J. Female mice respond to male ultrasonic “songs” with approach behaviour. Biol Lett. 2009;5(5):589–92. https://doi.org/10.1098/rsbl.2009.0317.
Article
CAS
PubMed
PubMed Central
Google Scholar
White NR, Prasad M, Barfield RJ, Nyby JG. 40- and 70-kHz vocalizations of mice (Mus musculus) during copulation. Physiol Behav. 1998;63(4):467–73. https://doi.org/10.1016/s0031-9384(97)00484-8.
Article
CAS
PubMed
Google Scholar
Neunuebel JP, Taylor AL, Arthur BJ, Roian Egnor SE. Female mice ultrasonically interact with males during courtship displays. Elife. 2015;4:1–24. https://doi.org/10.7554/eLife.06203.
Article
Google Scholar
Heckman JJ, Proville R, Heckman GJ, Azarfar A, Celikel T, Englitz B. High-precision spatial localization of mouse vocalizations during social interaction. Sci Rep. 2017;7(1):1–16. https://doi.org/10.1038/s41598-017-02954-z.
Article
CAS
Google Scholar
Warren MR, Clein RS, Spurrier MS, Roth ED, Neunuebel JP. Ultrashort-range, high-frequency communication by female mice shapes social interactions. Sci Rep. 2020;10(1):1–14. https://doi.org/10.1038/s41598-020-59418-0.
Article
CAS
Google Scholar
Scattoni ML, Crawley J, Ricceri L. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neurosci Biobehav Rev. 2009;33(4):508–15. https://doi.org/10.1016/j.neubiorev.2008.08.003.
Article
PubMed
Google Scholar
Hammerschmidt K, Radyushkin K, Ehrenreich H, Fischer J. The structure and usage of female and male mouse ultrasonic vocalizations reveal only minor differences. PLoS ONE. 2012;7(7):1–7. https://doi.org/10.1371/journal.pone.0041133.
Article
CAS
Google Scholar
Moles A, Costantini F, Garbugino L, Zanettini C, D’Amato FR. Ultrasonic vocalizations emitted during dyadic interactions in female mice: a possible index of sociability? Behav Brain Res. 2007;182(2):223–30. https://doi.org/10.1016/j.bbr.2007.01.020.
Article
PubMed
Google Scholar
Sugimoto H, Okabe S, Kato M, Koshida N, Shiroishi T, Mogi K, et al. A role for strain differences in waveforms of ultrasonic vocalizations during male-female interaction. PLoS ONE. 2011;6(7):e22093. https://doi.org/10.1371/journal.pone.0022093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao RP, Mielke F, Bobrov E, Brecht M. Vocalization-whisking coordination and multisensory integration of social signals in rat auditory cortex. Elife. 2014;3:1–20. https://doi.org/10.7554/eLife.03185.
Article
Google Scholar
Burkett ZD, Day NF, Peñagarikano O, Geschwind DH, White SA. VoICE: a semi-automated pipeline for standardizing vocal analysis across models. Nat Publ Gr. 2014. https://doi.org/10.7554/eLife.03185.
Google Scholar
Ey E, Torquet N, de Chaumont F, Lévi-Strauss J, Ferhat AT, Le Sourd AM, et al. Shank2 mutant mice display hyperactivity insensitive to methylphenidate and reduced flexibility in social motivation, but normal social recognition. Front Mol Neurosci. 2018;11:1–9. https://doi.org/10.3389/fnmol.2018.00365.
Article
CAS
Google Scholar
Pagani M, Bertero A, Liska A, Galbusera A, Sabbioni M, Barsotti N, et al. Deletion of autism risk gene shank3 disrupts prefrontal connectivity. J Neurosci. 2019;39(27):5299–310. https://doi.org/10.1523/JNEUROSCI.2529-18.2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet. 2011;20(15):3093–108. https://doi.org/10.1093/hmg/ddr212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scattoni ML, Martire A, Cartocci G, Ferrante A, Ricceri L. Reduced social interaction, behavioural flexibility and BDNF signalling in the BTBR T+tf/J strain, a mouse model of autism. Behav Brain Res. 2013;251:35–40. https://doi.org/10.1016/j.bbr.2012.12.028.
Article
CAS
PubMed
Google Scholar
Reno JM, Marker B, Cormack LK, Schallert T, Duvauchelle CL. Automating ultrasonic vocalization analyses: the WAAVES program. J Neurosci Methods. 2013;219:155–61. https://doi.org/10.1016/j.jneumeth.2013.06.006.
Article
PubMed
PubMed Central
Google Scholar
Zala SM, Reitschmidt D, Noll A, Balazs P, Penn DJ. Automatic mouse ultrasound detector (AMUD): a new tool for processing rodent vocalizations. PLoS ONE. 2017;12(7):3–9. https://doi.org/10.1371/journal.pone.0181200.
Article
CAS
Google Scholar
Coffey KR, Marx RG, Neumaier JF. DeepSqueak: a deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology. 2019;44(5):859–68. https://doi.org/10.1038/s41386-018-0303-6.
Article
PubMed
PubMed Central
Google Scholar
Tachibana RO, Kanno K, Okabe S, Kobayasi KI, Okanoya K. USVSEG: a robust method for segmentation of ultrasonic vocalizations in rodents. PLoS ONE. 2020. https://doi.org/10.1371/journal.pone.0228907.
Article
PubMed
PubMed Central
Google Scholar
Fonseca AHO, Santana GM, Bosque Ortiz GM, Bampi S, Dietrich MO. Analysis of ultrasonic vocalizations from mice using computer vision and machine learning. Elife. 2021;10:1–22. https://doi.org/10.7554/eLife.59161.
Article
Google Scholar
Arakawa H, Arakawa K, Blanchard DC, Blanchard RJ. Scent marking behavior in male C57BL/6J mice: sexual and developmental determination. Behav Brain Res. 2007;182(1):73–9. https://doi.org/10.1016/j.bbr.2007.05.007.
Article
PubMed
PubMed Central
Google Scholar
Chen AX, Yan JJ, Zhang W, Wang L, Yu ZX, Ding XJ, et al. Specific hypothalamic neurons required for sensing conspecific male cues relevant to inter-male aggression. Neuron. 2020;108(4):763-774.e6. https://doi.org/10.1016/j.neuron.2020.08.025.
Article
CAS
PubMed
Google Scholar
Hyun M, Taranda J, Radeljic G, Miner L, Wang W, Ochandarena N, et al. Social isolation uncovers a circuit underlying context-dependent territory-covering micturition. Proc Natl Acad Sci U S A. 2021. https://doi.org/10.1073/pnas.2018078118.
Article
PubMed
PubMed Central
Google Scholar
Lumley LA, Sipos ML, Charles RC, Charles RF, Meyerhoff JL. Social stress effects on territorial marking and ultrasonic vocalizations in mice. Physiol Behav. 1999;67(5):769–75. https://doi.org/10.1016/s0031-9384(99)00131-6.
Article
CAS
PubMed
Google Scholar
Hou XH, Hyun M, Taranda J, Huang KW, Todd E, Feng D, et al. Central control circuit for context-dependent micturition. Cell. 2016;167(1):73-86.e12. https://doi.org/10.1016/j.cell.2016.08.073.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaur AW, Ackels T, Kuo TH, Cichy A, Dey S, Hays C, et al. Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell. 2014;157(3):676–88. https://doi.org/10.1016/j.cell.2014.02.025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller CH, Hillock MF, Yang J, Carlson-Clarke B, Haxhillari K, Lee AY, et al. Dynamic changes to signal allocation rules in response to variable social environments in house mice. SSRN Electron J. 2022. https://doi.org/10.1101/2022.01.28.478242.
Google Scholar
Verstegen AM, Tish MM, Szczepanik LP, Zeidel ML, Geerling JC. Micturition video thermography in awake, behaving mice. J Neurosci Methods. 2020;331:108449. https://doi.org/10.1016/j.jneumeth.2019.108449.
Article
PubMed
Google Scholar
Carnevali L, Nalivaiko E, Sgoifo A. Respiratory patterns reflect different levels of aggressiveness and emotionality in wild-type Groningen rats. Respir Physiol Neurobiol. 2014;204:28–35. https://doi.org/10.1016/j.resp.2014.07.003.
Article
PubMed
Google Scholar
Alves JA, Boerner BC, Laplagne DA. Flexible coupling of respiration and vocalizations with locomotion and head movements in the freely behaving rat. Neural Plast. 2016. https://doi.org/10.1016/j.resp.2014.07.003.
Article
PubMed
PubMed Central
Google Scholar
Langford DJ, Bailey AL, Chanda ML, Clarke SE, Drummond TE, Echols S, et al. Coding of facial expressions of pain in the laboratory mouse. Nat Methods. 2010;7(6):447–9. https://doi.org/10.1038/nmeth.1455.
Article
CAS
PubMed
Google Scholar
Defensor EB, Corley MJ, Blanchard RJ, Blanchard DC. Facial expressions of mice in aggressive and fearful contexts. Physiol Behav. 2012;107:680–5. https://doi.org/10.1016/j.physbeh.2012.03.024.
Article
CAS
PubMed
Google Scholar
Finlayson K, Lampe JF, Hintze S, Würbel H, Melotti L. Facial indicators of positive emotions in rats. PLoS ONE. 2016;11(11):1–24. https://doi.org/10.1371/journal.pone.0166446.
Article
CAS
Google Scholar
Saito Y, Yuki S, Seki Y, Kagawa H, Okanoya K. Cognitive bias in rats evoked by ultrasonic vocalizations suggests emotional contagion. Behav Processes. 2016;132:5–11. https://doi.org/10.1016/j.beproc.2016.08.005.
Article
PubMed
Google Scholar