Raymond GV, Bauman ML, Kemper TL. Hippocampus in autism: a Golgi analysis. Acta Neuropathol. 1996;91:117–9.
Article
CAS
PubMed
Google Scholar
Jacot-Descombes S, Uppal N, Wicinski B, Santos M, Schmeidler J, Giannakopoulos P, et al. Decreased pyramidal neuron size in Brodmann areas 44 and 45 in patients with autism. Acta Neuropathol. 2012;124:67–79. https://doi.org/10.1007/s00401-012-0976-6.
Article
CAS
PubMed
Google Scholar
Casanova MF, Kooten v, Imke AJ, Switala AE, van Engeland H, Heinsen H, Steinbusch HWM, et al. Minicolumnar abnormalities in autism. Acta Neuropathol. 2006;112:287–303. https://doi.org/10.1007/s00401-006-0085-5.
Article
PubMed
Google Scholar
Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S, et al. Patches of disorganization in the neocortex of children with autism. N Engl J Med. 2014;370:1209–19. https://doi.org/10.1056/NEJMoa1307491.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron. 2015;87:1215–33. https://doi.org/10.1016/j.neuron.2015.09.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94:677–94. https://doi.org/10.1016/j.ajhg.2014.03.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woodbury-Smith M, Scherer SW. Progress in the genetics of autism spectrum disorder. Dev Med Child Neurol. 2018. https://doi.org/10.1111/dmcn.13717.
Article
Google Scholar
Stein JL. Copy number variation and brain structure: lessons learned from chromosome 16p11.2. Genome Med. 2015;7:13. https://doi.org/10.1186/s13073-015-0140-8.
Article
PubMed
PubMed Central
Google Scholar
NIH Genetics Home Reference. https://ghr.nlm.nih.gov/condition/16p112-deletion-syndrome. Accessed 30 Apr 2018.
NIH Genetics Home Reference. https://ghr.nlm.nih.gov/condition/16p112-duplication. Accessed 30 Apr 2018.
Blumenthal I, Ragavendran A, Erdin S, Klei L, Sugathan A, Guide JR, et al. Transcriptional consequences of 16p11.2 deletion and duplication in mouse cortex and multiplex autism families. Am J Hum Genet. 2014;94:870–83. https://doi.org/10.1016/j.ajhg.2014.05.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blaker-Lee A, Gupta S, McCammon JM, de RG, Sive H. Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes. Dis Model Mech. 2012;5:834–51. https://doi.org/10.1242/dmm.009944.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCammon JM, Blaker-Lee A, Chen X, Sive H. The 16p11.2 homologs fam57ba and doc2a generate certain brain and body phenotypes. Hum Mol Genet. 2017;26:3699–712. https://doi.org/10.1093/hmg/ddx255.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arbogast T, Ouagazzal A-M, Chevalier C, Kopanitsa M, Afinowi N, Migliavacca E, et al. Reciprocal effects on neurocognitive and metabolic phenotypes in mouse models of 16p11.2 deletion and duplication syndromes. PLoS Genet. 2016;12:e1005709. https://doi.org/10.1371/journal.pgen.1005709.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pucilowska J, Vithayathil J, Tavares EJ, Kelly C, Karlo JC, Landreth GE. The 16p11.2 deletion mouse model of autism exhibits altered cortical progenitor proliferation and brain cytoarchitecture linked to the ERK MAPK pathway. J Neurosci. 2015;35:3190–200. https://doi.org/10.1523/JNEUROSCI.4864-13.2015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horev G, Ellegood J, Lerch JP, Son Y-EE, Muthuswamy L, Vogel H, et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci U S A. 2011;108:17076–81. https://doi.org/10.1073/pnas.1114042108.
Article
PubMed
PubMed Central
Google Scholar
Blizinsky KD, Diaz-Castro B, Forrest MP, Schurmann B, Bach AP, Martin-de-Saavedra MD, et al. Reversal of dendritic phenotypes in 16p11.2 microduplication mouse model neurons by pharmacological targeting of a network hub. Proc Natl Acad Sci U S A. 2016;113:8520–5. https://doi.org/10.1073/pnas.1607014113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grissom NM, McKee SE, Schoch H, Bowman N, Havekes R, O'Brien WT, et al. Male-specific deficits in natural reward learning in a mouse model of neurodevelopmental disorders. Mol Psychiatry. 2017. https://doi.org/10.1038/mp.2017.184.
Article
PubMed Central
PubMed
Google Scholar
Toma C, Hervás A, Balmaña N, Salgado M, Maristany M, Vilella E, et al. Neurotransmitter systems and neurotrophic factors in autism: association study of 37 genes suggests involvement of DDC. World J Biol Psychiatry. 2013;14:516–27. https://doi.org/10.3109/15622975.2011.602719.
Article
PubMed
Google Scholar
Freitag CM, Agelopoulos K, Huy E, Rothermundt M, Krakowitzky P, Meyer J, et al. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder. Eur Child Adolesc Psychiatry. 2010;19:67–74. https://doi.org/10.1007/s00787-009-0043-6.
Article
PubMed
Google Scholar
Golzio C, Willer J, Talkowski ME, Oh EC, Taniguchi Y, Jacquemont S, et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature. 2012;485:363–7. https://doi.org/10.1038/nature11091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ip JPK, Nagakura I, Petravicz J, Li K, Wiemer EAC, Sur M. Major vault protein, a candidate gene in 16p11.2 microdeletion syndrome, is required for the homeostatic regulation of visual cortical plasticity. J Neurosci. 2018. https://doi.org/10.1523/JNEUROSCI.2034-17.2018.
Article
CAS
PubMed Central
PubMed
Google Scholar
Calderon de Anda F, Rosario AL, Durak O, Tran T, Gräff J, Meletis K, et al. Autism spectrum disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex. Nat Neurosci. 2012;15:1022–31. https://doi.org/10.1038/nn.3141.
Article
CAS
Google Scholar
Li Z, He X, Feng J. 16p11.2 is required for neuronal polarity. WJNS. 2013;03:221–7. https://doi.org/10.4236/wjns.2013.34029.
Article
CAS
Google Scholar
Qureshi AY, Mueller S, Snyder AZ, Mukherjee P, Berman JI, Roberts TPL, et al. Opposing brain differences in 16p11.2 deletion and duplication carriers. J Neurosci. 2014;34:11199–211. https://doi.org/10.1523/JNEUROSCI.1366-14.2014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subramanian M, Timmerman CK, Schwartz JL, Pham DL, Meffert MK. Characterizing autism spectrum disorders by key biochemical pathways. Front Neurosci. 2015;9:313. https://doi.org/10.3389/fnins.2015.00313.
Article
PubMed
PubMed Central
Google Scholar
Lin GN, Corominas R, Lemmens I, Yang X, Tavernier J, Hill DE, et al. Spatiotemporal 16p11.2 protein network implicates cortical late mid-fetal brain development and KCTD13-Cul3-RhoA pathway in psychiatric diseases. Neuron. 2015;85:742–54. https://doi.org/10.1016/j.neuron.2015.01.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiocchetti AG, Haslinger D, Stein JL, de La T-UL, Cocchi E, Rothamel T, et al. Transcriptomic signatures of neuronal differentiation and their association with risk genes for autism spectrum and related neuropsychiatric disorders. Transl Psychiatry. 2016;6:e864. https://doi.org/10.1038/tp.2016.119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ting KK, Brew BJ, Guillemin GJ. Effect of quinolinic acid on human astrocytes morphology and functions: implications in Alzheimer's disease. J Neuroinflammation. 2009;6:36. https://doi.org/10.1186/1742-2094-6-36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukuoka S-I, Kawashima R, Asuma R, Shibata K, Fukuwatari T. Quinolinate accumulation in the brains of the quinolinate phosphoribosyltransferase (qprt) knockout mice; 2012. https://doi.org/10.5772/31749.
Book
Google Scholar
Terakata M, Fukuwatari T, Sano M, Nakao N, Sasaki R, Fukuoka S-I, Shibata K. Establishment of true niacin deficiency in quinolinic acid phosphoribosyltransferase knockout mice. J Nutr. 2012;142:2148–53. https://doi.org/10.3945/jn.112.167569.
Article
CAS
PubMed
Google Scholar
Lim CK, Essa MM, de PMR, Lovejoy DB, Bilgin AA, Waly MI, et al. Altered kynurenine pathway metabolism in autism: implication for immune-induced glutamatergic activity. Autism Res. 2015. https://doi.org/10.1002/aur.1565.
Article
PubMed
Google Scholar
Shen C, L-r H, X-l Z, P-r W, Zhong N. Novel interactive partners of neuroligin 3: new aspects for pathogenesis of autism. J Mol Neurosci. 2015;56:89–101. https://doi.org/10.1007/s12031-014-0470-9.
Article
CAS
PubMed
Google Scholar
Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al. Spatio-temporal transcriptome of the human brain. Nature. 2011;478:483–9. https://doi.org/10.1038/nature10523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neitzel H. A routine method for the establishment of permanent growing lymphoblastoid cell lines. Hum Genet. 1986;73:320–6.
Article
CAS
PubMed
Google Scholar
Chiocchetti AG, Haslinger D, Boesch M, Karl T, Wiemann S, Freitag CM, et al. Protein signatures of oxidative stress response in a patient specific cell line model for autism. Mol Autism. 2014;5:10. https://doi.org/10.1186/2040-2392-5-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poustka F, Lisch S, Rühl D, Sacher A, Schmötzer G, Werner K. The standardized diagnosis of autism, autism diagnostic interview-revised: interrater reliability of the German form of the interview. Psychopathology. 1996;29:145–53.
Article
CAS
PubMed
Google Scholar
Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–85.
Article
CAS
PubMed
Google Scholar
Bölte S, Poustka F. Diagnostische Beobachtungsskala für Autistische Störungen (ADOS): Erste Ergebnisse zur Zuverlässigkeit und Gültigkeit. Z Kinder Jugendpsychiatr Psychother. 2004;32:45–50. https://doi.org/10.1024/1422-4917.32.1.45.
Article
PubMed
Google Scholar
Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev. 2015;82:518–29. https://doi.org/10.1002/mrd.22489.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ristanović D, Milosević NT, Stulić V. Application of modified Sholl analysis to neuronal dendritic arborization of the cat spinal cord. J Neurosci Methods. 2006;158:212–8. https://doi.org/10.1016/j.jneumeth.2006.05.030.
Article
PubMed
Google Scholar
ImageJ Sholl Analysis. http://imagej.net/Sholl_Analysis. Accessed 30 Apr 2018.
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308. https://doi.org/10.1038/nprot.2013.143.
Article
CAS
PubMed
PubMed Central
Google Scholar
CRISPR design. http://crispr.mit.edu/. Accessed 30 Apr 2018.
Braidy N, Guillemin GJ, Grant R. Effects of kynurenine pathway inhibition on NAD metabolism and cell viability in human primary astrocytes and neurons. Int J Tryptophan Res. 2011;4:29–37. https://doi.org/10.4137/IJTR.S7052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braidy N, Grant R, Adams S, Brew BJ, Guillemin GJ. Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res. 2009;16:77–86. https://doi.org/10.1007/s12640-009-9051-z.
Article
CAS
PubMed
Google Scholar
Petroni D, Tsai J, Mondal D, George W. Attenuation of low dose methylmercury and glutamate induced-cytotoxicity and tau phosphorylation by an N-methyl-D-aspartate antagonist in human neuroblastoma (SHSY5Y) cells. Environ Toxicol. 2013;28:700–6. https://doi.org/10.1002/tox.20765.
Article
CAS
PubMed
Google Scholar
Candemir E, Kollert L, Weissflog L, Geis M, Muller A, Post AM, et al. Interaction of NOS1AP with the NOS-I PDZ domain: implications for schizophrenia-related alterations in dendritic morphology. Eur Neuropsychopharmacol. 2016;26:741–55. https://doi.org/10.1016/j.euroneuro.2016.01.008.
Article
CAS
PubMed
Google Scholar
Zheng T, Xu SY, Zhou SQ, Lai LY, Li L. Nicotinamide adenine dinucleotide (NAD+) repletion attenuates bupivacaine-induced neurotoxicity. Neurochem Res. 2013;38:1880–94. https://doi.org/10.1007/s11064-013-1094-0.
Article
CAS
PubMed
Google Scholar
Lim CK, Bilgin A, Lovejoy DB, Tan V, Bustamante S, Taylor BV, et al. Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Sci Rep. 2017;7:41473. https://doi.org/10.1038/srep41473.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhernakov A, Rotter B, Winter P, Borisov A, Tikhonovich I, Zhukov V. Massive Analysis of cDNA Ends (MACE) for transcript-based marker design in pea (Pisum sativum L.). Genom Data. 2017;11:75–6. https://doi.org/10.1016/j.gdata.2016.12.004.
Article
PubMed
Google Scholar
Müller S, Rycak L, Afonso-Grunz F, Winter P, Zawada AM, Damrath E, et al. APADB: a database for alternative polyadenylation and microRNA regulation events. Database (Oxford). 2014. https://doi.org/10.1093/database/bau076.
Article
PubMed Central
PubMed
Google Scholar
Nold-Petry CA, Lo CY, Rudloff I, Elgass KD, Li S, Gantier MP, et al. IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol. 2015;16:354–65. https://doi.org/10.1038/ni.3103.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yousaf A, Duketis E, Jarczok T, Sachse M, Biscaldi M, Degenhardt F, et al. Mapping the genetics of neuropsychological traits to the molecular network of the human brain using a data integrative approach. bioRxiv. 2018. https://doi.org/10.1101/336776.
SFARI Gene. https://gene.sfari.org/database/human-gene/. Accessed 30 Apr 2018.
Deshpande A, Yadav S, Dao DQ, Wu Z-Y, Hokanson KC, Cahill MK, et al. Cellular phenotypes in human iPSC-derived neurons from a genetic model of autism spectrum disorder. Cell Rep. 2017;21:2678–87. https://doi.org/10.1016/j.celrep.2017.11.037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahm F, Oezen I, Opitz CA, Radlwimmer B, von Deimling A, Ahrendt T, et al. The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res. 2013;73:3225–34. https://doi.org/10.1158/0008-5472.CAN-12-3831.
Article
CAS
PubMed
Google Scholar
Campbell BM, Charych E, Lee AW, Möller T. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci. 2014;8:12. https://doi.org/10.3389/fnins.2014.00012.
Article
PubMed
PubMed Central
Google Scholar
Buxbaum JD, Silverman JM, Smith CJ, Greenberg DA, Kilifarski M, Reichert J, et al. Association between a GABRB3 polymorphism and autism. Mol Psychiatry. 2002;7:311–6. https://doi.org/10.1038/sj.mp.4001011.
Article
CAS
PubMed
Google Scholar
de La Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22:345–61. https://doi.org/10.1038/nm.4071.
Article
CAS
Google Scholar
Bulayeva K, Lesch K-P, Bulayev O, Walsh C, Glatt S, Gurgenova F, et al. Genomic structural variants are linked with intellectual disability. J Neural Transm (Vienna). 2015;122:1289–301. https://doi.org/10.1007/s00702-015-1366-8.
Article
CAS
Google Scholar
Rosenfeld JA, Ballif BC, Torchia BS, Sahoo T, Ravnan JB, Schultz R, et al. Copy number variations associated with autism spectrum disorders contribute to a spectrum of neurodevelopmental disorders. Genet Med. 2010;12:694–702. https://doi.org/10.1097/GIM.0b013e3181f0c5f3.
Article
PubMed
Google Scholar
Yamakawa H, Oyama S, Mitsuhashi H, Sasagawa N, Uchino S, Kohsaka S, Ishiura S. Neuroligins 3 and 4X interact with syntrophin-gamma2, and the interactions are affected by autism-related mutations. Biochem Biophys Res Commun. 2007;355:41–6. https://doi.org/10.1016/j.bbrc.2007.01.127.
Article
CAS
PubMed
Google Scholar
Gilling M, Rasmussen HB, Calloe K, Sequeira AF, Baretto M, Oliveira G, et al. Dysfunction of the heteromeric KV7.3/KV7.5 potassium channel is associated with autism spectrum disorders. Front Genet. 2013;4:54. https://doi.org/10.3389/fgene.2013.00054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peñagarikano O, Geschwind DH. What does CNTNAP2 reveal about autism spectrum disorder? Trends Mol Med. 2012;18:156–63. https://doi.org/10.1016/j.molmed.2012.01.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiocchetti AG, Kopp M, Waltes R, Haslinger D, Duketis E, Jarczok TA, et al. Variants of the CNTNAP2 5′ promoter as risk factors for autism spectrum disorders: a genetic and functional approach. Mol Psychiatry. 2015;20:839–49. https://doi.org/10.1038/mp.2014.103.
Article
CAS
PubMed
Google Scholar
Yamada T, Sakisaka T, Hisata S, Baba T, Takai Y. RA-RhoGAP, Rap-activated Rho GTPase-activating protein implicated in neurite outgrowth through Rho. J Biol Chem. 2005;280:33026–34.
Article
CAS
PubMed
Google Scholar
Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31:137–45. https://doi.org/10.1016/j.tins.2007.12.005.
Article
CAS
PubMed
Google Scholar
Patriquin MA, DeRamus T, Libero LE, Laird A, Kana RK. Neuroanatomical and neurofunctional markers of social cognition in autism spectrum disorder. Hum Brain Mapp. 2016;37:3957–78. https://doi.org/10.1002/hbm.23288.
Article
PubMed
PubMed Central
Google Scholar
Dickinson A, Jones M, Milne E. Measuring neural excitation and inhibition in autism: different approaches, different findings and different interpretations. Brain Res. 2016;1648:277–89. https://doi.org/10.1016/j.brainres.2016.07.011.
Article
CAS
PubMed
Google Scholar
Bozzi Y, Provenzano G, Casarosa S. Neurobiological bases of autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance. Eur J Neurosci. 2017. https://doi.org/10.1111/ejn.13595.
Article
Google Scholar
Guglielmi L, Servettini I, Caramia M, Catacuzzeno L, Franciolini F, D'Adamo MC, Pessia M. Update on the implication of potassium channels in autism: K(+) channelautism spectrum disorder. Front Cell Neurosci. 2015;9:34. https://doi.org/10.3389/fncel.2015.00034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iourov IY, Vorsanova SG, Voinova VY, Yurov YB. 3p22.1p21.31 microdeletion identifies CCK as Asperger syndrome candidate gene and shows the way for therapeutic strategies in chromosome imbalances. Mol Cytogenet. 2015;8:82. https://doi.org/10.1186/s13039-015-0185-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, et al. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol. 2017. https://doi.org/10.1007/s00401-017-1736-4.
Article
CAS
PubMed Central
PubMed
Google Scholar
Berkowicz SR, Featherby TJ, Qu Z, Giousoh A, Borg NA, Heng JI, et al. Brinp1(−/−) mice exhibit autism-like behaviour, altered memory, hyperactivity and increased parvalbumin-positive cortical interneuron density. Mol Autism. 2016;7:22. https://doi.org/10.1186/s13229-016-0079-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quesnel-Vallières M, Dargaei Z, Irimia M, Gonatopoulos-Pournatzis T, Ip JY, Wu M, et al. Misregulation of an activity-dependent splicing network as a common mechanism underlying autism spectrum disorders. Mol Cell. 2016;64:1023–34. https://doi.org/10.1016/j.molcel.2016.11.033.
Article
CAS
PubMed
Google Scholar