Skip to main content
Fig. 1 | Molecular Autism

Fig. 1

From: Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction

Fig. 1

Cellular systems and functional read-outs used for stem cell-based modeling of ASD. Patient-specific and control iPSC lines are generated by classic reprogramming. Genome editing enables the repair of disease-related genetic variants or targeted insertion of ASD-related mutations into a control background, thereby providing isogenic pairs of disease-specific and control iPSC lines. Extrinsic factor-based differentiation is used to generate mixed neuronal cultures, which can be enriched for excitatory or inhibitory neurons depending on the culture conditions. More precise lineage specification can be achieved by transcription factor-based forward programming into induced glutamatergic or GABAergic neurons (iGlutNs or iGABANs; see also Table 1). 3D models such as cerebral organoids or xenotransplantation of human cells into the rodent brain might be used to study pathophenotypes in a tissue-like context. So far, ASD-related functional alterations have mainly been studied using patch clamping (PC), multi-electrode arrays (MEAs) and functional imaging (FI). Components of the figure were adapted from Servier Medical Art (https://smart.servier.com/#). CTRL: control; *Mixed neuronal cultures might be enriched for e.g. glutamatergic neurons

Back to article page