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Abstract

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in
social cognition. The biological basis of deficits in social cognition in ASD, and their difficulty in processing
emotional face information in particular, remains unclear. Atypical communication within and between brain
regions has been reported in ASD. Interregional phase-locking is a neurophysiological mechanism mediating
communication among brain areas and is understood to support cognitive functions. In the present study we
investigated interregional magnetoencephalographic phase synchronization during the perception of emotional
faces in adolescents with ASD.

Methods: A total of 22 adolescents with ASD (18 males, mean age =14.2 ± 1.15 years, 22 right-handed) with mild
to no cognitive delay and 17 healthy controls (14 males, mean age =14.4 ± 0.33 years, 16 right-handed) performed
an implicit emotional processing task requiring perception of happy, angry and neutral faces while we recorded
neuromagnetic signals. The faces were presented rapidly (80 ms duration) to the left or right of a central fixation
cross and participants responded to a scrambled pattern that was presented concurrently on the opposite side of
the fixation point. Task-dependent interregional phase-locking was calculated among source-resolved brain regions.

Results: Task-dependent increases in interregional beta synchronization were observed. Beta-band interregional
phase-locking in adolescents with ASD was reduced, relative to controls, during the perception of angry faces in a
distributed network involving the right fusiform gyrus and insula. No significant group differences were found for
happy or neutral faces, or other analyzed frequency ranges. Significant reductions in task-dependent beta
connectivity strength, clustering and eigenvector centrality (all P <0.001) in the right insula were found in
adolescents with ASD, relative to controls.

Conclusions: Reduced beta synchronization may reflect inadequate recruitment of task-relevant networks during
emotional face processing in ASD. The right insula, specifically, was a hub of reduced functional connectivity and
may play a prominent role in the inability to effectively extract emotional information from faces. These findings
suggest that functional disconnection in brain networks mediating emotional processes may contribute to deficits
in social cognition in this population.
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Background
Autism spectrum disorder (ASD) is a neurodevelopmental
disorder in which deficits in social cognition are one of
the defining features. The ability to process facial expres-
sions is critically important for social cognition; facial ex-
pressions are signals from the social environment and
deficits in the ability to accurately perceive and process
emotional expressions play a critical role in difficulties
with social interactions. While it is generally understood
that individuals with ASD experience difficulties with so-
cial cues, the current literature on emotional face process-
ing in ASD has yielded inconsistent results, with some
authors finding deficits in emotional processing [1-5],
whereas others report no deficits [4,6-8]. Magnetoen-
cephalography (MEG) is a functional neuroimaging tech-
nique that allows for the examination of neural network
synchronization. We used this approach to investigate the
functional network connectivity underlying emotional face
processing in ASD, which plays a crucial role in the social
cognitive difficulties that are a hallmark of ASD.
Functional magnetic resonance imaging (fMRI) studies

have reported atypical activation of social brain networks
during emotional face processing in adults with ASD
[9-11], while event-related potential and MEG studies
have demonstrated abnormal neural responses in youths
and adults with ASD, relative to controls [12-16]. Increas-
ing evidence indicates that atypical structural and func-
tional connectivity contribute to cognitive difficulties in
ASD. Diffusion tensor imaging (DTI) indicates aberrant
white matter connectivity in autism [17] (see [18] for re-
view). Studies of functional interactions among brain areas
using hemodynamic neuroimaging (fcMRI) also suggest
altered intrinsic and task-dependent network connectivity
(see [19] for review). Collectively, such findings lend in-
creasing credence to the view that altered development of
brain connectivity may be associated with social and cog-
nitive difficulties in ASD [20-23].
Phase synchronization of neural oscillations among brain

areas has been proposed as a mechanism supporting
communication in distributed neural networks underlying
cognition and perception [24,25]. Disruption of normal os-
cillatory network coherence is associated with various
neurological and neuropsychiatric conditions [26], and ac-
cumulating evidence points to this as being critical for un-
derstanding neurodevelopmental disorders, including ASD
[27,28]. Studies of phase coherence among scalp electroen-
cephalography (EEG) electrodes have indicated abnormal
functional connectivity in ASD [29]. Reduced interregional
MEG synchronization has also been reported in children
with ASD during the performance of an executive set-
shifting task [30]. Reduced interregional coordination of
coupling between low- and high-frequency MEG oscilla-
tions has been reported among task-relevant brain areas
during a face perception task in ASD [31]. It is not clear,
however, whether phase synchronization of neuromagnetic
oscillations in distributed networks is also atypical in indi-
viduals with ASD during social cognition.
Only a few fMRI studies have examined functional

connectivity during affective face processing in ASD.
Decreased connectivity between the fusiform gyri, other
cortical areas (bilateral posterior cingulate gyri, left
cuneus) and subcortical (left amygdala) structures during
face processing in adults with ASD, relative to controls,
has been observed [32]. Furthermore, atypical connectiv-
ity between the right amygdala and frontal and temporal
regions has been shown in adolescents with ASD, com-
pared to controls, in response to happy, sad and angry
faces [33]. MEG affords both a unique and good com-
bination of spatial and temporal resolution and is a dir-
ect measure of neural activity. In addition to both high
spatial and temporal resolution, MEG is also silent; an
advantage when considering studies in ASD given that
sensory issues are known to be a symptom of the dis-
order. To date, there have been few MEG studies exam-
ining functional connectivity during the perception of
emotional faces in ASD. One study reported reduced
task-dependent local connectivity within the fusiform
gyri, which was proportional to reduced long-range con-
nectivity between the fusiform and left precuneus, left
inferior frontal gyrus and left anterior cingulate cortex
[31]. These results contrast previous hypotheses about
increased local functional connectivity at the expense of
reduced long-range connectivity [34-36]. Furthermore,
despite the importance of studying a paediatric popula-
tion in order to understand how atypical patterns of
connectivity arise in a neurodevelopmental disorder, a
limited number of studies has addressed these issues in
the developing population and the current literature re-
mains largely focused on adults [32,33].
Emotional face processing remains an effective method

of assessing social cognition in ASD, as the ability to
process emotional faces efficiently is integral to social
cognition and successful social interactions. Happy and
angry facial expressions were chosen as emotional ex-
pressions of interest, with the former acting as definitely
positive displays of emotion and the latter as negative
affective stimuli. Although some studies have reported
intact processing of happy emotional information in in-
dividuals with ASD [37], investigating the neural con-
nectivity underlying the processing of positive affect in
ASD remains an important topic of examination, as indi-
viduals with ASD have been shown to have deficits in
deriving social reward from happy faces [38]. We also
employed angry, rather than fearful, faces as the process-
ing of anger appears to involve a greater understanding
of social norms, which has been found to be impaired in
many individuals with ASD [39,40]. Anger, while still
considered a basic emotion, is usually exhibited in response
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to transgressions by another individual and both children
with ASD and, to a greater extent, typically developing
children can identify social reasons for anger [41]. Fur-
thermore, individuals with ASD have shown difficulty in
processing angry faces [42,43]. Hence, focusing on the net-
work connectivity underlying angry face processing in
adolescents with ASD is an effective approach for under-
standing atypical affective processing and, subsequently,
social cognitive deficits in ASD.
The present study investigated the perception of both

neutral and emotional faces in adolescents with and
without ASD to investigate the hypothesis that interre-
gional network synchronization is atypical in ASD dur-
ing the processing of emotional information in faces.
Although the relations between neural connectivity and
ASD as measured by oscillatory neural synchronization
remain unclear, in light of accumulating evidence indi-
cating impaired long-range connectivity in ASD (see
[21] for review), we hypothesized that reduced long-
range connectivity in networks related to emotional pro-
cessing would be observed in adolescents with ASD.

Methods
Participants
A total of 22 adolescents with ASD (range: 12 to 15 years,
18 males, mean age =14.2 ± 1.15 years, 22 right-handed)
and 17 typically developing controls (range: 12 to 15 years,
14 males, mean age =14.4 ± 0.33 years, 16 right-handed)
were recruited. Exclusion criteria for both groups included
a history of neurological or neurodevelopment disorders
(other than ASD for participants in the clinical group), ac-
quired brain injury, uncorrected vision, colour blindness,
IQ ≤65, language skills inadequate for completion of the
tasks through self-report and standard contraindications
to MEG and MRI. Additional exclusion criteria for con-
trols included use of psychotropic medications; six adoles-
cents with ASD were taking medication at the time of the
response 
80 ms                            1300-15

Figure 1 Implicit emotional face processing task. An emotional (happy
hemifield and presented concurrently with a scrambled pattern (target) in
were instructed to press a button corresponding to the side of the target o
study. The study was approved by The Hospital for Sick
Children Research Ethics Board and written informed con-
sent was obtained from all participants and their parents.
Qualification measures
A combination of expert clinical judgment, medical diag-
nostic reports and the Autism Diagnostic Observation
Schedule-General (ADOS-G) [44] confirmed clinical diag-
noses for all participants with ASD. The mean ADOS-G
total score was 10.95 ± 3.37, which was well above the
clinical threshold. Full-scale IQ was estimated for all par-
ticipants using the two-subtest Wechsler Abbreviated Scale
of Intelligence, which includes Vocabulary and Matrix
Reasoning (WASI-2) [45].
Magnetoencephalography task
In each trial of the MEG task, a face (happy, angry or neu-
tral) was presented concurrently with a scrambled pattern
on either side of a central fixation cross (Figure 1). Partici-
pants were instructed to fixate on the central cross and in-
dicate the location of the scrambled pattern by pressing
left or right buttons on a button box as quickly as possible.
The MEG task was implicit in that participants were
instructed to attend to the scrambled pattern, not the
emotional face stimuli. The implicit nature of the task in-
creased ecological validity as adaptive social behaviour re-
quires individuals to automatically and rapidly process
affect. A total of 25 colour photographs of different faces
(13 males, 12 females) for each of the three expressions
were selected from the NimStim Set of Facial Expressions;
only happy and angry faces with validity ratings at a
minimum of 80% accuracy were selected [46]. To create
unique scrambled patterns corresponding to each face,
each of the selected faces from the NimStim set was di-
vided into 64 cells, randomized, mosaicked (15 cells per
square) and Gaussian blurred (10.0 degrees) using Adobe®
00 ms                            80 ms             

, angry or neutral) face is randomly located in either the left or right
the other hemifield with a fixation cross in the center. Participants
n a response button box as rapidly as possible.
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Photoshop software. Face-pattern pairs were matched for
luminosity and colour.
A total of 50 trials of each of the three expressions in the

left and right hemifields (each face was presented twice in
each hemifield) were shown in randomized order for a
total of 300 trials. Presentation® software (Neurobehavioral
Systems) was used to present stimuli. To minimize sac-
cadic eye movements, stimuli were presented for 80 ms
with a varying inter-stimulus interval of 1,300 to 1,500 ms;
each trial thus ranged from 1380 to 1580 ms. Images were
back-projected through a set of mirrors onto a screen po-
sitioned at a viewing distance of 79 cm. The visual angle of
the stimuli was 6.9° and fell within the parafoveal region of
view. Response latency was recorded for each trial.

Neuroimaging data acquisition
MEG data were recorded using a 151-channel CTF MEG
system (MISL, Coquitlam, British Columbia, Canada) at a
600 Hz sampling rate with continuous head localization in
a magnetically shielded room at the Hospital for Sick
Children. A third-order spatial gradient was used to im-
prove signal quality with a recording bandpass of 0 to
150 Hz. Participants were supine while they completed
the experimental paradigm in the MEG. Fiducial coils
were placed on the left and right pre-auricular points
and the nasion to monitor head position and movement
within the dewar. Following the MEG recording, fi-
ducials were replaced by radio-opaque markers for
MRI co-registration. A T1-weighted MRI scan (3D SAG
MPRAGE: PAT, GRAPPA =2, TR/TE/FA =2300 ms/
2.96 ms/90°, FOV = 28.8 × 19.2 cm, 256 × 256 matrix,
192 slices, slice thickness =1.0 mm isotropic voxels)
was obtained for each participant on a 3 T MRI scanner
(MAGNETOM Tim Trio, Siemens AG, Erlangen,
Germany) with a 12-channel head coil.

Atlas-guided source reconstruction
Data epochs (−400 to 400 ms) were extracted surrounding
the presentation of happy, neutral and angry faces. MEG
data were co-registered with each individual’s MRI image
using the three fiducial markers. A multi-sphere head
model was constructed for each participant using each in-
dividual’s MRI and used to model the forward solution.
Statistical Parametric Mapping 2 (SPM2) was used to
normalize each individual’s brain space onto a standard
Montreal Neurological Institute (MNI) brain. A total of 90
seed locations were then selected, which represent all cor-
tical and subcortical areas in the Automated Anatomical
Labeling (AAL) atlas [47]. The coordinates of each seed
location were then unwarped from standard MNI space
into each individual’s head space. For each subject, broad-
band time series were reconstructed for each source loca-
tion and trial using scalar beamformer analysis [48,49].
Beamformers are based on the concept of adaptive spatial
filtering, where the aim is to estimate the signal from a
given brain location through the weighted sum of surface
field measurements while suppressing signals from all
other locations [48,49]. A weighted sum representing an
estimate of activity from the source is created by applying
a weight vector to the measurement vector [50]. The
spatial filter outputs the activity at the desired source.
Contributions from non-target sources are minimized
while the power at the desired source is optimized
through the least-mean-squares technique.

Interregional phase synchronization
Data from each epoch were filtered into theta (4 to
7 Hz), alpha (8 to 14 Hz) and beta (15 to 30 Hz) fre-
quency ranges. Alpha, beta and theta band network
synchronization was investigated, as these rhythms are
understood to be particularly relevant for interregional
communication [51-54]. The Hilbert transform was
employed to obtain time series of instantaneous phase
measures for each trial and source. For each region pair
and time point (ms), synchrony was indexed by calculat-
ing the phase lag index (PLI) across trials, for each fre-
quency band and subject. This measures the reliability of
phase relations between two regions at a given time
point, relative to stimulus onset. In this manner, time
series representing stimulus locked-phase synchrony
were obtained for each region pair, frequency and sub-
ject. It should be noted that PLI summarizes the reliabil-
ity of phase differences across trials for each data point,
source pair and frequency, while removing and attenuat-
ing synchronization which occurs at or near zero phase
difference, and thereby reduces the impact of spurious
synchronization originating from common sources [55].
This method produces a source-by-source adjacency
matrix for each time point within each analyzed fre-
quency band. These were then averaged across all partic-
ipants within each group (ASD and control), for each
trial condition (angry, happy and neutral). Time series of
adjacency matrices were compared across groups. These
adjacency matrices, together with average network con-
nectivity time series, obtained by averaging PLI across
sources for each time point, were used to investigate
task-dependent connectivity dynamics and identify win-
dows for further statistical analyses.
Distinct peaks in task-dependent network connectivity

changes were observed in both the time series of adja-
cency matrices and in the time series of average network
connectivity. Specifically, increased beta synchrony was
observed in the initial 400 ms following stimulus presen-
tation for all trial conditions (happy, angry and neutral)
in both the ASD and typically developing groups. To
characterize task-dependent network connectivity dy-
namics, adjacency matrices representing mean connect-
ivity within this 0 to 400 ms active window were
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obtained for each subject. Adjacency matrices were then
averaged across an equivalent number of time points
(−400 to 0 ms) in the pre-stimulus baseline interval.

Statistical analysis of network dynamics
A data-driven approach was used for the analyses in this
study, which was corrected for multiple comparisons, thus
a priori predictions did not direct analyses. The statistical
significance of connectivity differences between the active
and baseline intervals, as well as group differences in task-
dependent network synchronization, was assessed using
Network Based Statistic (NBS) [56,57]. NBS detects clus-
ters of functionally integrated nodes that significantly
differ between groups and is designed specifically for
analyses of differences in large-scale networks. NBS ac-
complishes this by first applying a univariate statistical
threshold to each element in the compared adjacency
matrix. In this case, to assess task-dependent network
connectivity for each group, a t-test is performed compar-
ing the average connectivity during the active window to
the average connectivity during the baseline window, for
each interregional connection in the 90 × 90 adjacency
matrix. The initial univariate threshold for between-group
comparisons was adapted for the data distributions being
analyzed to T = 4.5, as described by Zalesky et al. [56,57].
This threshold corresponds to a P value of P <0.0001, while
effective control for multiple comparisons is achieved irre-
spective of this initial threshold [56,57]. Data surrogation
was repeated 5,000 times to create a null distribution, and
the size of observed ‘real’ connectivity components was
considered relative to the surrogate data distribution in es-
tablishing statistical confidence.
Group differences between task-dependent network syn-

chronization were similarly assessed by using time win-
dows identified in the above analysis, subtracting the
mean baseline adjacency matrix from the active window
adjacency matrix for each subject, and using NBS to assess
the statistical significance of group differences. As above,
the T statistic for the initial univariate t-test between-
groups comparison of individual interregional connections
was adapted for the data distributions being compared, as
recommended by Zalesky et al. [56,57], to T = 3.5 (equi-
valent to P = 0.0012). The surrogate statistical method
described above was used to determine the statistical sig-
nificance of connectivity components reflecting group dif-
ferences in task-dependent network synchronization.

Graph theoretical analysis of dynamic network topologies
Recent application of graph theoretical analysis to struc-
tural and functional brain networks has enabled the quan-
tification of the connectivity of given brain regions within
larger networks by characterizing connections (edges)
between brain areas (nodes) [58]. Particular nodes of inter-
est were identified in a data-driven manner after being
identified as playing a critical role in group differences
using NBS and graph theoretical analysis. Then, time
series of the graph theoretical properties of strength, clus-
tering and eigenvector centrality of the nodes of interest,
which were identified in a data-driven manner after being
identified as playing a critical role in group differences
using NBS and graph theoretical analysis, at each time
point were calculated using the Brain Connectivity Tool-
box [59] from the adjacency matrices within a given
frequency range. Strength indexes how connected a par-
ticular node is to all other nodes in the analyzed network,
whereas clustering reflects the weight of connections
among a node’s neighbours and reflects the degree of
functional embeddedness of that node within the network
[60,61]. Eigenvector centrality represents the degree to
which a node is a communication hub and also pertains to
the importance of that node [62]. Graph theoretical mea-
sures were derived from a weighted, non-binarized, undir-
ected connectome as has been used in similar previous
studies [30] (see [59] for detailed methods used to derive
the connectome). Results obtained using NBS and graph
analysis were plotted using the BrainNet Viewer toolbox
[63]. This approach of atlas-guided beamformer re-
construction of task-dependent activity, quantification of
network synchronization dynamics using PLI, network
characterization using the NBS and graph theoretical mea-
sures to contrast active and baseline windows, reflects
methods that have been previously established [30].

Behavioural analyses
IQ and response latencies between groups and across
emotions on the MEG task were analyzed using SPSS 20.0
software (SPSS Inc., Chicago, Illinois, United States).

Results
Beta-band synchronization during face processing
Inspection of adjacency matrix time series and mean
network connectivity showed increased beta-band coher-
ence in both ASD and control subjects occurring in the
first 400 ms following stimulus presentation in all trial
conditions. In the typically developing controls, signifi-
cant task-dependent increases in connectivity were iden-
tified in each of the face conditions (Figure 2). Increased
beta-band network synchronization involved 26 nodes
and 27 edges during processing of angry faces (P <0.001,
corrected), 41 nodes and 54 edges during processing of
happy faces (P <0.001, corrected) and 33 nodes and 37
edges during processing of emotionally neutral face
stimuli (P <0.001, corrected). Across all three emotions,
regions expressing strong task-dependent increases in
beta-band connectivity strength were located in the oc-
cipital areas. Increased beta synchrony was observed in
widely distributed networks encompassing the frontal,
temporal and parietal regions. Of particular interest were



a) Angry

b) Happy

c) Neutral

Figure 2 (See legend on next page.)
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Figure 2 Task-dependent increases in connectivity across emotions in controls. Sagittal and axial views of significant task-dependent
increases in connectivity identified in a) angry, b) happy and c) neutral conditions in controls. In all three emotions, highly connected brain
regions were located in the occipital regions, with a widely distributed network encompassing the frontal, temporal and parietal regions. The size
of each region represents its connectivity strength.
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the right fusiform (region 56) and right insula (region 30),
which displayed increased beta-band synchronization with
other task-relevant brain regions during processing of
angry faces (Additional file 1: Figure S1B), whereas the bi-
lateral fusiform and right insula expressed increased beta
synchronization with other areas during perception of
happy faces. In contrast, in response to neutral faces, nei-
ther the fusiform or insula showed increased synchrony
with other areas.
a) b)

Figure 3 Between-groups comparison of beta-band interregional pha
and axial view of reduced beta-band interregional synchronization in adole
angry faces. The nodes and edges shown are those identified as expressing
node reflects the magnitude of group differences in connectivity strength.
reduced task-dependent beta-band connectivity strength in adolescents w
right insula, from the adjacency matrix for each time point, and subsequen
abbreviations, full region names and MNI coordinates; Left = left, right = rig
Inset time series represents the dynamics of right insula connectivity streng
ASD (blue line), smoothed for clarity. ASD = autism spectrum disorder; MNI
Reduced beta-band synchronization during processing of
angry faces in adolescents with ASD
To evaluate group differences in task-dependent con-
nectivity, NBS was employed, revealing reduced beta-
band interregional phase-locking in adolescents with
ASD (P <0.05, corrected), relative to typically developing
controls, in a distributed network during the perception
of angry faces (Figure 3a, Table 1). This network of re-
duced connectivity included the right fusiform gyrus and
se synchronization during processing of angry faces. a) Sagittal
scents with ASD in a distributed network during the perception of
reduced beta-band connectivity using NBS. This size of each identified
b) Between-group comparisons in the right insula showed significantly
ith ASD. This time series was calculated from the strength value for the
tly averaged across subjects within each group. See Table 1 for region
ht. The size of each region corresponds to its connectivity strength.
th during the perception of angry faces for controls (green line) and
=Montreal Neurological Institute; NBS = network-based statistic.



Table 1 Details of regions showing reduced beta-band interregional phase-locking in ASD during angry face
processing

Region abbreviation Full region name MNI coordinates (x, y, z)

AG L Angular Gyrus −44 −61 36

CAU R Caudate 15 12 9

F2 L Middle frontal gyrus −33 33 35

F1 R Superior frontal gyrus, dorsolateral 22 31 44

F1M R Superior frontal gyrus, medial 9 51 30

F3OP L Inferior frontal gyrus, opercular part −48 13 19

FUSI R Fusiform 34 −39 −20

INS R Insula 39 6 2

L Insula −35 7 3

PAL R Pallidum 21 0 0

PQ R Precuneus 10 −56 44

ROL L Rolandic operculum −47 −8 14

SMG R Supramarginal gyrus 58 −32 34

T3 R Inferior temporal gyrus 54 −31 −22
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also reduced beta-band synchronization between the right
insula and other task-relevant brain regions. No significant
group differences were found for the happy or neutral
faces, or for other analyzed frequency ranges (ps >0.05)
Connectivity dynamics during angry face processing in ad-
olescents with ASD and typically developing adolescents
were also contrasted across a range of neural regions
(Additional file 1: Figure S1, Additional file 2: Table S1).
Atypical beta-band insula network topologies in adolescents
with ASD
Due to the known importance of the insula for the pro-
cessing of emotional faces (see [64] for review), we investi-
gated graph properties of beta synchronization involving
the right insula. These analyses revealed clear modulation
of graph properties for the right insula, as well as dif-
ferences between adolescents with and without ASD (see
Figure 3b). The connectivity strength of this network
(Figure 3b), which peaked between 170 and 200 ms in
controls, was significantly reduced in ASD. We tested the
significance of group differences of insula beta-band graph
properties and found significantly reduced task-dependent
beta connectivity strength, clustering and eigenvector cen-
trality (all P <0.001) in adolescents with ASD. Thus, within
this face processing network in adolescents with ASD, the
right insula showed significantly reduced task-dependent
connectivity to other nodes, reduced functional embed-
dedness within the network, as well as playing a reduced
role as a communication hub, relative to typically develop-
ing adolescents (Figure 3b), and this reduction occurred
within the first 200 ms following face presentation.
Behavioural results
Adolescents with ASD (M = 94.69, SD = 14.57) had sig-
nificantly lower two-sub-test IQ scores than controls
(M = 112.47, SD = 11.05), (t(37) = 4.18, P <0.001). A
three (expression: happy, angry or neutral) × two
(group: ASD and controls) ANOVA showed no main or
interaction effect between emotion and group on re-
sponse latency, F(1, 36) = 1.94, P = 0.17.

Discussion
We present the first demonstration of increased neuro-
magnetic interregional beta-band synchronization during
face processing. We also provide the first evidence for
reduced interregional beta phase synchronization during
emotional face perception in adolescents with ASD,
specifically to angry faces. These results are consistent
and support previous findings. A reduction in beta phase
synchronization only in response to angry faces may re-
flect the self-conscious nature of anger as an emotion, re-
quiring the understanding of social norms and context,
with which individuals with ASD struggle [41,42,65-67]. In
contrast, seemingly typical processing of happy affect in
individuals with ASD was observed, which may be attrib-
uted to the greater frequency of encountering and famil-
iarity with happy faces [10,37]. The pattern of normative
beta-band synchronization was predominantly character-
ized by connectivity between visual brain areas and
‘higher-order’ processing areas. This likely represents the
transfer of information from brain areas relevant for vision
to other task-relevant regions, including those responsible
for face perception and affective processing. The pattern
of reduced connectivity in adolescents with ASD did not
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reflect the normative pattern of task synchronization, but
rather indicated reduced synchrony involving regions rele-
vant for face perception and affective processing (the fusi-
form and insula, respectively). Accordingly, we interpret
reduced task-dependent network synchronization in ASD
as reflecting reduced communication in brain networks
that contribute to social cognition. The fact that this re-
duction occurred within the first 200 ms and involved the
fusiform and insula, as well as association areas such as
the supramarginal gyrus and frontal areas, demonstrates
the very rapid and complex processing of emotional faces
is impaired in adolescents with ASD.
While the ability to perceive basic emotions is largely in

place by six years of age, accuracy in discriminating be-
tween facial expressions, as well as recognition of more
complex emotions, develops with age, continuing into the
adolescent period [68-72]. Maturation of emotional pro-
cessing for unique emotions is staggered across deve-
lopment, with the ability to identify happy expressions
maturing earliest while accurate identification of negative
emotions, such as anger and fear, mature at later ages,
suggesting that negative emotions require more complex
processing [70]. Evidence that different emotions develop
distinctly is found in reports of a significant increase in
sensitivity towards anger from adolescence to adulthood,
in contrast to fear, which increases linearly from late
childhood into adulthood [73]. A developmental phase at
around 11 years of age has been found, during which emo-
tional processing abilities undergo marked improvement,
suggesting greater demands on neural areas implicated
in emotional processing in early adolescence [74]. The
present results suggest that the adolescents with ASD
are still impaired in the acquisition of the more difficult
emotional expression, anger.
The reduced task-dependent synchronization to angry

faces included the right fusiform gyrus, and in particular
synchronization between the right insula and other brain
areas. Further investigation of task-dependent beta con-
nectivity involving the right insula using graph analysis
revealed reduced task-dependent connectivity strength,
clustering and eigenvector centrality in adolescents with
ASD. These results indicate that ASD may be associated
with a reduced ability to marshal the very rapid and com-
plex network communication of brain regions critical for
emotional processing; such functional disconnection may
contribute to deficits in emotional face processing pre-
valent in this population. Cognitive and perceptual per-
formance requires selection and functional integration of
task-relevant neuronal populations, which may be dis-
tributed across brain areas [75]. Multiple lines of evidence
indicate that neural synchronization is a mechanism medi-
ating such communication dynamics in the brain [25,28].
The dynamics of neural synchronization supporting vari-
ous cognitive and perceptual processes can be effectively
imaged in source space using MEG [76]. It is also clear
that such task-dependent neuromagnetic synchronization
is relevant for understanding individual differences in cog-
nitive ability [77], as well as cognitive difficulties in clinical
child populations [78].
Previous MEG research has implicated beta-band con-

nectivity in visual perception [79]. Recent theories synthe-
sizing results across studies and modalities have suggested
that beta-band connectivity is particularly pertinent for
establishing long-range communication among brain re-
gions, and especially relevant for feedback interactions
among brain areas [51,80]. In light of this, the reduced
beta synchronization in the ASD group in the present
study could reflect inadequate re-entrant processing in
task-dependent networks, involving areas such as the right
insula, leading to an inability to effectively extract emo-
tional information from faces.
Current literature implicates the insula as an interface

between the frontal and limbic regions, playing a role in
assigning emotional salience to perceived events (see
[64] for a review) [81-83]. Furthermore, atypical insula
activity in individuals with ASD may underlie difficulties
in emotional awareness of one’s own self, as well as
others [84]. The anterior insula is recruited as part of a
larger valence network responsible for attributing emo-
tional salience [85], and is more likely to be hypoactive
during social cognitive tasks in ASD [86]. This region
also exhibits functional connectivity with the anterior
cingulate cortex, a region widely implicated in emotion
processing that also shows hypoactivity during social
tasks [86-88]. Decreased intrinsic functional connectivity
between both the anterior and posterior insular cortices
and other brain regions implicated in emotional process-
ing has been noted in youths with ASD [83]. These find-
ings are in concert with our current results and support
the notion that altered beta-band synchronization be-
tween the insula and other neural regions is associated
with affective processing deficits in ASD.
Of further interest was the insular lateralization in our

findings. In typically developing individuals, emotional
stimuli have been shown to elicit bilateral anterior and
mid-insula activation, with left-hemisphere dominance in
the anterior and mid-insula towards positively valenced
stimuli, and bilateral activation in both regions towards
negative stimuli [64]. Previously, a high degree of coupled
activity between the left and right insula regions was re-
ported in fMRI of typical adults [89], while decreased in-
terhemispheric connectivity between these regions has
been noted in ASD [90]. Only the right insula was found
to be a hub of significantly reduced connectivity in the
ASD group, showing reduced connections with areas in-
cluding the right fusiform, right inferior temporal gyrus
and superior frontal regions. Reduced early insula beta-
band connectivity with the fusiform is of particular
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interest given the fusiform’s relevance for face processing;
these results are in line with previous reports showing fu-
siform hypoactivation during emotional face processing in
ASD [91].
A popular hypothesis is that reduced long-range func-

tional connectivity and increased local connectivity plays
a critical role in ASD [34-36]. A body of literature sup-
ports the idea of long-range underconnectivity in ASD,
however, a review of fcMRI studies in this field found
that studies supporting the underconnectivity theory
share methodological similarities that may account for
the results [19]. Despite such findings, a recent MEG
study examining task-related local connectivity through
phase-amplitude coupling in the fusiform regions has
found both local and long-range underconnectivity in
ASD [31]. Furthermore, this study indicated that the
strength of local reduction in connectivity was propor-
tional to the reduction in long-range connectivity and
was associated with the severity of autistic sympto-
mology, lending credence to the theory of general under-
connectivity in ASD [31]. The present study provides a
concordant set of findings, and suggests that reductions
in task-dependent long-range connectivity may contrib-
ute to difficulties in social cognition in ASD.
A limitation of the present study is that although group

differences in beta-band synchronization were observed
during the perception of angry faces, our approach of
using NBS for characterizing network connectivity dif-
ferences did not support direct analysis of interactions.
Specifically, a group-by-emotion interaction could not be
addressed in the current study design. Accordingly, it is
possible that adolescents with ASD may express atypical
network connectivity during the processing of happy and
neutral faces, but that the current investigation was in-
sufficiently powered to reveal these differences. A further
potential limitation of the present study was the lack of
behavioural corroboration for the observed between-
group differences in neural networks. However, com-
parable performance indicates that differences in brain
connectivity cannot be attributed to performance. Studies
in adults have also found differences in functional con-
nectivity between those with and without ASD without
any behavioural group differences in happy and angry
faces [33]. These results suggest that while behavioural
performance is comparable, individuals with ASD may
be processing emotional faces through the recruitment
of alternate neural patterns of functional connectivity.
Employing tasks with greater emotional and/or cogni-
tive load may reveal behavioural differences with corre-
sponding neural effects. While the accuracy limits of
MEG in localizing deep brain sources are still evolving,
multiple studies have shown MEG to be effective at lo-
calizing deep sources [88,92] and interregional connect-
ivity involving deep sources [93], thus our findings in
this regard were not unexpected. Lastly, our clinical and
control groups were not matched for IQ, with our ASD
participants showing significantly lower IQ scores relative
to controls. Future studies may examine emotional face
processing focusing on individuals with ASD with normal
IQs or including IQ-matched controls (see [94] for a dis-
cussion of this issue).
Conclusions
The present study provides the first evidence for reduced
MEG beta-band synchronization to emotional faces in
adolescents with ASD. During processing of angry faces,
we demonstrated reduced task-dependent connectivity in
graph theory through measurements of strength, cluster-
ing and eigenvector centrality, peaking between 170 and
200 ms in the right insula in the ASD group. These find-
ings suggest that difficulties in emotional face perception
in those with ASD may be associated with reduced com-
munication among task-dependent brain regions, parti-
cularly involving the right insula; a region critical for
affective processing. Future studies should explore these
findings throughout childhood and thus study the devel-
opment of these connectivity patterns associated with
emotional face processing in ASD.
Additional files

Additional file 1: Figure S1. Connectivity matrices in the beta
frequency band during angry face processing. Group averages of
connectivity dynamics in the beta frequency band in response to angry
faces during angry face processing in A) adolescents with ASD and B)
controls. C) Between-group differences in connectivity dynamics high-
lights the disorganization in connectivity dynamics in ASD. See Additional
file 2: Table S1 for regions, coordinates, and corresponding labels.
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