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Abstract

Background: Autism spectrum disorders (ASD) manifest with neurodevelopmental phenotypes including
communicative, social and behavioral impairments that affect as many as 1 in 88 children. The majority of autism
cases have no known genetic cause, suggesting complex genetics of the disorder, but a few genes of large effect
have been identified.

Methods: In order to identify novel ASD genetic correlates, we investigated non-protein coding RNAs (ncRNAs)
which are abundantly transcribed from the human genome, enriched in the brain, and have been implicated in
neurodevelopmental disorders. Using an algorithm that we developed, we examined a publicly available
transcriptomics database, AceView, to identify the natural antisense transcripts (NATs) that overlap with known
autism-related genes. We validated the presence and differential expression of NATs in different brain regions of
ASD and control brains using gRT-PCR. Additionally, we investigated the subcellular localization of these transcripts
in a neuronal cell line using RNA-sequencing (RNA-seq).

Results: We found noncoding antisense RNA transcripts at approximately 40% of loci previously implicated in ASD.
We confirmed the expression of 10 antisense RNAs in different postmortem human brain tissues. The expression of
five antisense transcripts was found to be region-specific, suggesting a role for these ncRNAs in the development
and function of specific brain regions. Some antisense RNAs overlapping suspected ASD genes exhibited
concordant expression relative to their sense protein-coding genes, while other sense-antisense pairs demonstrate a
discordant relationship. Interestingly, the antisense RNA corresponding to the SYNGAPT locus (SYNGAPT-AS) was
found to be differentially expressed in brain regions of patients with ASD compared to control individuals. RNA-seq
analysis of subcellular compartments from SH-SY5Y human neuroblastoma cells demonstrated that antisense RNAs
to ASD candidate genes are predominantly expressed in the nucleoplasmic or chromatin compartments, implying
their involvement in nuclear-associated processes.

Conclusions: Our data suggests that NATs are abundantly expressed from ASD-related loci and provide evidence
for their roles in target gene regulation, neurodevelopment and autism pathogenesis. This class of RNA should
therefore be considered in functional studies aimed at understanding genetic risk factors for ASD.
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Background

Autism spectrum disorders (ASD) are heterogeneous
neurodevelopmental disorders, both in terms of clinical
manifestations and genetic risk factors [1]. Disease fre-
quency among siblings of affected children is approxi-
mately 2% to 8%, which is much higher than the
prevalence rate of the general population and monozy-
gotic twins have 60% concordance for classic autism and
92% for broader autistic phenotypes, indicating strong
genetic inheritance as the predominant causative agent
[2]. Genetic studies show that ASD can arise from rare,
but highly penetrant, mutations and genomic imbalances
[3,4] with more than a hundred disease-associated genes
and genomic loci having been reported [5,6]. Such muta-
tions may contribute to ASD etiology by affecting conven-
tional genes directly or indirectly by altering the function
of non-protein coding RNAs (ncRNAs) expressed in the
same genomic loci. Recent evidence has implicated such
ncRNAs in neurodevelopmental and neurodegenerative
disorders including autism [7-15].

Large transcriptomic consortiums such as ENCODE
[16] and FANTOM [17,18] have demonstrated that the
human genome is pervasively transcribed and that the pri-
mary output are ncRNAs. Through diverse mechanisms,
these ncRNAs control protein production and function at
multiple levels, including epigenetic control of their corre-
sponding or distant loci [19,20], alteration of localization,
stability or processing of targets [20,21], or by modulating
translational efficiency by binding to the 3" UTR of tran-
scripts, as in the case of microRNAs [22,23]. Natural anti-
sense transcripts (NATs) are a conserved class of long
(>200 nt in length) ncRNA molecules that are transcribed
from the opposite DNA strand of a sense RNA partner
with which they have sequence complementarity [18,24].
Such antisense RNAs can exert cis-regulatory functions to
increase (concordant) or decrease (discordant) expression
levels of their corresponding sense mRNA [21]. The gene
regulator functions can also work in trans by affecting
genes from distant genomic loci.

Here, we developed an algorithm to mine existing public
transcriptomic repositories for the presence of NATs that
are produced from ASD candidate genes. We believe that
ncRNA information processing systems involving such
transcripts represent a critical but under-appreciated di-
mension of the cell machinery that must be considered in
order to identify pathological events and facilitate novel
therapeutic development strategies for ASD.

Methods

Ethics statement

The University of Miami Institutional Review Board has
deemed this study exempt from the full review due to the
use of de-identified human post-mortem brain samples,
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with no possibility to track back the identity of the donors.
There is no animal study involved in this paper.

Postmortem brain tissue and RNA extraction

Tissue samples were provided by the National Institute of
Child Health and Development (NICHD) at the University
of Maryland. A complete description of the samples is
provided in Additional file 1: Table S2.

For RNA extraction ~100 mg of brain tissue was lysed
in trizol (Life Technologies), 200 pL of chloroform were
added and the sample was incubated at room temperature
for 10 minutes. The samples were then centrifuged for 20
minutes at 4°C. The supernatant (aqueous phase) was then
transferred to a new tube containing 1.5 volumes of 100%
ethanol. The ethanol/RNA mixture was then loaded onto
a RNeasy column (Qiagen) and purified as per the manu-
facturer’s instructions, including on-column DNase treat-
ment. Typical yields from both non-ASD and Autism
subjects were about 10-12 g of total RNA from 100 mg
of tissue.

Primer design

Primers were designed using Primer 3 software with the
sequences from AceView and synthesized by Integrated
DNA Technologies (Additional file 2: Table S3). Primers
were designed for a splice junction when possible; when
primers were designed for an exon they were designed
either for a region of the antisense transcript that does
not overlap the sense gene or for a region where the
antisense overlaps an intron of the sense transcript
(Additional file 3: Figure S1). In these cases, strand-
specific quantitative real-time RT-PCR was utilized to
avoid amplifying the transcript encoded on the opposite
strand of DNA.

Quantitative real time RT-PCR (qRT-PCR)

For qRT-PCR, total RNA was reverse transcribed using
the High-Capacity cDNA Reverse Transcription Kit (Life
Technologies). The cDNA was then diluted 1:5 and was
used as a template for both SYBR Green (Life Technolo-
gies, 4368706) and TagMan qPCR using the ABI 7900
(Life Technologies). TagMan probes for human PGKI
from Life Technologies (Hs00943178_gl) were used to
measure gene expression of the endogenous control.
Three technical replicates were performed for each reac-
tion. No-template controls were included in each reaction
and the melting curve was analyzed to assess the specifi-
city of each primer (Additional file 4: Appendix 1). In case
the primers were designed for a single exon and did not
span a splice junction, appropriate no-RT controls were
used to avoid including samples contaminated with DNA.
The results of the quantitative real-time RT-PCR were
analyzed with SDS 2.3 software from Life Technologies.
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Strand-specific qRT-PCR

To perform strand-specific measurement of antisense
transcript expression, we designed primers for a region of
antisense transcript that overlaps with an intron or the
promoter of the sense gene. Next, we used one-step RNA-
to-Ct SYBR Green Kit (Life Technologies, 4389986). We
performed reverse transcription (RT) step in a 384-well
optical plate using reverse primers to specifically reverse-
transcribe antisense RNA and to exclude the possibility of
measuring the expression of the sense pre-mRNA. Sam-
ples were then incubated at 95°C for 5 minutes to inacti-
vate the reverse transcriptase enzyme. Forward primers
were then added to the reaction and quantitative PCR was
performed on the same plate. We included no-RT control
and no-template controls for each set of primers to con-
trol for non-specific binding.

Statistical analysis

For all qRT-PCR reactions, three technical replicates were
performed. To compare the expression of antisense RNAs
across the three brain regions, GraphPad prism software
was used to perform ANOVA followed by Tukey post-hoc
test. A p value of below 0.05 was considered as statistically
significant. The Student’s ¢-test was used to compare the
expression between the normal brain and ASD.

Cellular fractionation

SH-SY5Y cells were fractionated using a modified NE-PER
Kit (PIERCE) to isolate RNA from the cytosol, nucleoplasm
and chromatin. Briefly, the cells were collected and washed
twice with PBS. Cell membranes were lysed using a hypo-
tonic buffer and cells were ultra-centrifuged to pellet nuclei,
and the cytosol was recovered from the supernatant. Nuclei
were further lysed and centrifuged in order to pellet the in-
soluble chromatin and recover the nuclear extract in the
supernatant. The insoluble chromatin pellet was solubilized
in PBS with mild sonication. RNA was extracted from each
of the three compartments using a combination of two
protocols: Trizol LS (Invitrogen) and RNeasy Mini Kit
(QIAGEN). Each sample was dissolved in the appropriate
amount of Trizol LS (1 mL for 300 pL sample) and incu-
bated for 10 min at room temperature. Chloroform (200 puL
for 1 mL Trizol) was added to the mix and the sample was
centrifuged for 20 minutes at 4°C. The aqueous phase of
the supernatant was transferred into a new tube and mixed
with 1.5 volumes of absolute ethanol. The sample was then
loaded onto the cartridge provided by the QIAGEN kit
and on-column DNase treatment was performed as per
the manufacturer’s protocol. RNA quality was verified
using the Agilent Bioanalyzer RNA6000 nano kit.

Library preparation
RNA samples were prepared for directional RNA sequen-
cing using a modified version of the Illumina sample
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preparation protocol. Briefly, 1 pg of total RNA was
processed using Ribo-ZeroTM rRNA Removal Kits to
remove ribosomal RNAs. Ribosome-depleted RNA was
treated with phosphatase before being treated with T4
polynucleotide kinase (PNK). PNK-treated RNA was then
purified with the QIAGEN RNeasy column purification
kit and 3" and 5" RNA adapters were ligated to both ends
of the RNA in separate reactions. Next, the RNA was re-
verse transcribed and PCR amplified. PCR products were
purified using AMPure beads. RNA sequencing libraries
were validated using the Agilent Bioanalyzer High Sen-
sitivity DNA kit and sequenced using the Illumina
HiSeq2000 platform at the Genomics sequencing core
at the University of Miami. Each sample was run in a
single flowcell to increase depth of sequencing.

RNA-seq analysis

The sequencing reads were pre-processed with a custom
Python script to trim library adapters. This allowed the
generation of 62,500,000 reads per sample on average,
which provided an acceptable coverage and sequencing
depth. The trimmed reads were then aligned to the human
transcriptome assembly GRCh37 from ENSEMBL using
TopHat version 2.04 [25]. TopHat was run with default
parameters and Samtools [26] were used to calculate the
alignment statistics for each sample. The bam files gener-
ated with TopHat were further used as input for Cufflinks
[27] to perform ab initio transcriptome assembly. The
assembled fragments were then annotated using the
Cuffcompare module of Cufflinks and AceView data-
base file as a reference. The fragments that originated
from introns and incompletely spliced RNAs were filtered
out, and Fragments Per Kilobase of transcript per Million
reads Mapped (FPKM) values for fragments transcribed
from each locus were added to obtain locus expression.

Results

Bioinformatic identification of ASD-related noncoding
RNAs

AceView is a transcriptome database created and sup-
ported by the National Center for Biotechnology Informa-
tion (NCBI) that represents a curated non-redundant
collection of RNA transcripts derived from public cDNA
collections (MRNAs from GenBank or RefSeq, and single
pass cDNA sequences from dbEST and Trace) [28].
AceView also includes information on tissue-specific ex-
pression for transcripts and is an excellent source of
transcriptomic data for high-throughput genome-wide
studies.

We have developed a bioinformatics pipeline to mine
the AceView and to perform high-throughput searches
of noncoding RNAs in the antisense orientation to genes
of interest (Figure la). This pipeline uses information on
the genomic coordinates of transcripts, their exonic
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Figure 1 Bioinformatics identification of NATs expressed from ASD-related loci. (a) Bioinformatics pipeline used for the identification of
noncoding antisense RNAs. (b) Antisense noncoding RNAs to 103 ASD-related genes derived with our bioinformatics pipeline. Seventy-one
noncoding antisense RNAs were identified overlapping 38 of 103 analyzed genes; thus, each sense gene has ~two antisense RNAs on average.
(c) Distribution of noncoding antisense RNAs to ASD-related genes based on the type of sense-antisense overlap. The majority of the antisense
RNAs overlaps an intron of the sense gene but do not have an overlap with the mature sense transcript (intronic overlap). Approximately equal
numbers of antisense RNAs overlap an exon of the sense transcripts (exonic overlap) or gene promoters (promoter overlap); some of the
antisense transcripts with intronic or exonic overlap have mixed classifications and can also overlap the promoter regions of their sense partners.

structure and their coding potential that is contained in ~ ASD candidate genes have one or more noncoding anti-
the gene transfer format (GTF) files downloaded from  sense transcripts that may contribute to ASD pathophysi-
the AceView website, to perform a simultaneous search  ology and are henceforth referred to as ASD-NATSs.

for non-protein-coding antisense RNAs. The program

first retrieves, from the AceView database, the exonic

coordinates of all alternative transcripts corresponding ASD-NATs are expressed in human brain tissues

to a user-provided list of genes. The information of Of the 71 identified ASD-NATs, 18 were selected for
exonic structure of sense transcripts is utilized to obtain ~ qRT-PCR validation studies using commercially available
AceView transcripts that are in antisense conformation  RNAs from total brain extract, frontal cortex, and cere-
and determine the type of sense-antisense overlap. Next, bellum. The expression of 12 transcripts was confirmed
coding antisense transcripts are filtered out preserving in at least one brain region or in the total brain extract
only non-protein-coding transcripts. We utilized this (Table 1). Notably, the antisense transcript of FOXGI
pipeline to investigate the presence of antisense tran- (FOXGI-AS) was found in the cortex but not in the
scripts overlapping 103 genes, mutations of which were  cerebellum, implying a certain level of region-specificity
causally implicated in ASD [5]. This gene list was se- in the expression of some ASD-NATs. FOXGI encodes a
lected for our bioinformatics analysis as it was manually  transcription factor thought to play a role in the devel-
annotated by examining existing medical literature and  opment of the cortex [29,30] and mutations in this gene
published in a peer-reviewed journal, provided both the have been reported in a variety of neurodevelopment
scope and confidence in the quality of the analysis [5].  disorders and higher-order brain function [31].

Thus, using this fairly accurate list of genes we were able To expand these studies, we compared expression levels
to identify at least one noncoding antisense RNA partner  of ASD-NATSs across multiple brain regions using a cohort
for 38 of the examined genes (37%) (Additional file 5: of human postmortem brain samples provided by the
Table S1). Overall, 71 noncoding RNA loci were identi- NICHD at the University of Maryland. RNA was extracted
fied, yielding two antisense partners per sense gene on from three brain regions; the prefrontal cortex (PFC), su-
average (Figure 1b). These antisense RNAs represent perior temporal gyrus (STG), and cerebellum (Additional
three structural classes based on the position of the anti-  file 1: Table S2). We observed that 9 out of the 10 ASD-
sense transcript with respect to the sense gene: intronic ~ NATs were detectable in all brain regions, except FOXGI-
overlap, exonic overlap and promoter overlap (Figure la  AS, which was detected in all PFC and STG samples but
and c). Therefore, a significant number of gene loci with  none of the cerebellar samples (Figure 2a and Additional
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Table 1 Antisense RNAs to ASD-related genes expressed in the human brain

Sense gene name Antisense gene coordinates

Antisense AceView name Antisense type

FOXP1 3:71630795-71678203,1
ZNF81 X:47765952-47764918-1
SYNGAP1 6:33422342-33405140,-1
CACNA1C 12:2781443-2777666,-1
NIPBL 5:36876787-36864527 -1
VPS13B 8:100026175-100008986,-1

NHS X:17755214-17658171 -1

DHCR7 11:71159652-71163207,1
LAMP2 X:119572593-119576511,1
PTEN 10:89631419-89630176,-1
FOXG1 14:29234525-29194448 -1
PQBP1 X:48758712-48758117,-1

chyrarbu exonic; promoter
zoyfoy intronic
kleefloybu exonic; promoter
kirare exonic
LOC646719 promoter
speeshor promoter

kiro exonic

steymor intronic; promoter
werkoy exonic

kloloy intronic
sachawbu promoter

foyker exonic; promoter

file 6: Figure S3). This finding corroborates our initial
analysis using commercial RNA from the frontal cortex,
and confirms region-selective expression of FOXGI-AS.
Our data demonstrate that the majority of noncoding
antisense RNAs from ASD-related loci are expressed in
the human brain and suggest the possibility that certain
ASD-NATs may have region-dependent patterns of
expression reflecting their biological functions.

ASD-NATs are differentially expressed in human brain
regions

Many ncRNAs are dynamically regulated during differen-
tiation and exhibit tissue- and cell type-specific patterns of
expression with proposed functions and mechanisms far
more complex than originally anticipated [32-36]. Tem-
poral and spatial expression of many long ncRNAs ap-
pears to be crucial for proper CNS development and
neurological functioning through the precise regulation of
a variety of biological processes [37-39].

Here, we investigated the expression patterns of ASD-
NATs in the 9 PFC, 9 STG and 7 cerebella of non-ASD
young individuals with average age of 15.79 + 4.05 years
(Additional file 1: Table S2). Among the 11 selected
NATs, we found 6 to be differentially expressed within
the examined brain regions. The structure, position in
respect to the sense gene and location of the primers for
these transcripts is depicted in Figure 3. Three of these
transcripts, SYNGAPI-AS, CACNA1C-AS and NIBPL-AS
have higher expression levels in the cerebellum as com-
pared to the PFC and STG, while PQBPI-AS is more
abundantly expressed in the PFC compared to both the
STG and cerebellum and LAMP2-AS was expressed at a
higher level in PFC compared to cerebellum (Figure 2a).
The region-specific expression of the above antisense tran-
scripts suggests a possible role in the development and
function of the PFC, STG and cerebellum. The region-
specificity of these transcripts suggests that NATs are not

a product of random spurious transcription and provides
a basis for future therapeutic approaches that could be
tailored to specific regions of the brain, targeting non-
protein-coding antisense targets instead of protein-
coding genes.

ASD-NATSs show characteristic patterns of expressions
with respect to their sense protein-coding partner

NATSs can exert regulatory functions in cis by modulating
the expression of neighboring genes [7,19,21]. In order to
determine if ASD-NATs modulate the expression levels of
protein-coding ASD-related genes through cis-regulation,
we examined their respective expression levels. We ob-
served discordant patterns of expression for two sense-
antisense pairs: SYNGAPI/SYNGAPI-AS and PQBPI1/
PQBPI-AS. SYNGAPI was more highly expressed in the
cortex compared to the cerebellum, whereas PQBPI is
more abundant in the cerebellum (Figure 2b). Discordant
expression of these exonic sense/antisense pairs suggests
possible regulation of the protein-coding gene by its non-
coding counterpart, a phenomenon already described for
other loci [15,19,40]. Two other protein-coding genes,
NIPBL and FOXGI, showed a pattern of region-specific
expression similar to their promoter-associated antisense
partners (Figure 2b). These NATs may have a positive
regulatory effect on the sense partner [15], or the sense-
antisense pairs might be co-regulated [41]. It is note-
worthy that these two ASD-NATSs overlap the promoter of
their protein-coding sense partner, thus potentially sharing
the same regulatory elements.

Overall, our data show that ASD-NATs show a re-
gional expression pattern in the brain and further show
discordant or concordant expression with regards to
their sense partners, suggesting these noncoding anti-
sense transcripts may perform highly specialized region-
specific functions by affecting the expression of their
sense partners.
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SYNGAP1 antisense RNA (SYNGAP1-AS) is differentially
expressed in ASD brain tissues compared to age-matched
controls

The differential expression of ASD-NATSs observed across
brain regions suggests a tissue-specific function for these
RNA transcripts. Thus, we hypothesized that expression
of ASD-NATs may be altered in the brain of patients with
autism compared to non-ASD cases. To test this hypoth-
esis, we used qRT-PCR to measure the expression of the
10 ASD-NATSs that we could detect in the PFC and STG
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Figure 2 ASD-related NATs and mRNA expression in different
human brain regions. gRT-PCR analysis of ASD-related NATs (a)
and corresponding mRNA (b) in the prefrontal cortex (PFC), superior
temporal gyrus (STG) and cerebellum of non-ASD human
postmortem brain. Transcript expression is normalized to PGKT.
Strand-specific gRT-PCR was used to measure expression of
SYNGAPI-AS and POBPI-AS. *-P <0.05, **-P <0.01, Tukey's post-hoc
test; NS: not significant, NE: not expressed.
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of 18 (9 autistic and 9 age-matched individuals) and in the
cerebella of 13 (7 autistic and 6 age-matched individuals).

We found SYNGAPI-AS to be significantly upregulated
(p<0.05) in the PFC and STG of autistic patients (Figure 4a
and b), but not in the cerebellum (Figure 4c). The
SYNGAPI gene codes for Synaptic Ras GTPase activating
protein 1, which is critical for synapse function and is
involved in cognition [42]. SYNGAPI plays a role in brain
development as well as higher-order brain function, as
mutations in this gene lead to mental retardation [43-45].
Although not statistically significant, three other ASD-
NATs (FOXG1-AS, VSP13B-AS, NHS-AS) show an appre-
ciable trend of differential expression in ASD (Additional
file 7: Figure S4). Additionally, we found that the expres-
sion of SYNGAPI-AS negatively correlates with the ex-
pression of SYNGAPI sense gene in the prefrontal cortex
of non-ASD individuals (Figure 4d). Our finding that
SYNGAPI-AS expression is affected only in the PFC and
STG and not in the cerebellum of autistic patients sug-
gests that dysregulation of this non-protein-coding anti-
sense transcript may be cortex-specific, leading to possible
impairment of cortical function.

Subcellular localization of ASD-NATs

Of the proposed functions of NATs [21], regulation of
chromatin structure and epigenetic memory has received
the most experimental support. Antisense transcripts have
been shown to provide a scaffold by which proteins can
interact with DNA and histones in a locus specific manner
[19,46]. Thus, it is not surprising that ncRNAs are pre-
dominantly localized to the nucleus or associated with
chromatin, while protein-coding RNAs are more abundant
in the cytosol [16].

In order to assess the subcellular localization of ASD-
NATs, we isolated RNA from three cellular fractions (cyto-
plasm, nucleus, chromatin) of SH-SY5Y neuroblastoma
cells and performed RNA sequencing (RNA-seq). FPKM
reflecting expression levels of individual loci were used to
further compare the expression of antisense RNAs between
different compartments (Additional file 8: Dataset S1). We
found that three out of 10 ASD-related NATs could be
detected in SH-SY5Y cells using RNA-seq: SYNGAPI-AS,
VPS13B-AS and NIBPL-AS. All three antisense transcripts
were expressed predominantly in the nucleoplasm or chro-
matin compartments, while little or no expression was
observed in the cytoplasm (Figure 5a-c). The pattern of
subcellular localization of these ncRNAs is different from
that of protein-coding genes such as beta-actin, which is
largely localized to the cytoplasm (Figure 5d). The nuclear
localization of these NATs offers evidence for the function
of these transcripts in nuclear-associated processes and sug-
gests that ASD-NATSs might play a role in chromatin modi-
fications or in transcriptional regulation. Overall, these data
suggest that ASD-antisense RNAs overlapping genes
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previously implicated in ASD represent functional ele-
ments that may regulate brain function and development
by regulating transcription of other genes.

Discussion

Despite overwhelming evidence for the genetic causes of
ASD, an exact mode of inheritance has not been elucidated
and the wide phenotypic variability of ASD likely reflects
the disruption of multiple gene networks and complex
regulatory circuits within the genome. Recent data indicate
that multiple genomic loci and several rare and highly
penetrant gene variants (e.g., NLGN3, NLGN4, SLC9AY,
NRXNI, RPL10, SHANK?2, SHANK3, CNTNAP2, PTCHDI,
and PTEN among others) are involved in ASD [5,6,47].
These genes and loci may account for 20-25% of children
with ASD, but none of them can individually explain more
than 2% of the cases [48].

Most eukaryotic genomes are transcribed as ncRNAs
of various sizes ranging from 20 nucleotides to over 100
kb [16]. The number of ncRNAs in eukaryotic genomes
increases as a function of developmental complexity
[17,49,50]. Furthermore, many ncRNAs are expressed in
the nervous system where they are thought to mediate
fundamental biological functions [51,52]. Natural anti-
sense transcripts have been reported for greater than
70% of transcriptional units within the human genome
[17] and include primate-specific or human-specific [53]

as well as other evolutionary conserved transcripts [54].
Aberrant expression of regulatory antisense RNAs might
have defined consequences on the expression and/or
function of protein-coding transcripts [15] and in some
cases on the epigenetic status of the entire genomic loci
[40,55]. Transcriptomic as well as in vivo studies have
revealed the importance of several long ncRNAs in the
maturation of neuronal cell subtypes [38,56,57]. These
recent findings have raised the possibility of a more exten-
sive role for long ncRNAs in regulating gene expression
during neuronal differentiation and CNS development. In-
deed, it was recently reported that several ncRNAs play
functional roles in ASD. For example, a long ncRNA
disrupted in schizophrenia 2 (DISC2) is a NAT overlap-
ping the DISCI gene and has been implicated in schizo-
phrenia, bipolar disorder [58] and autism [59]. A more
recent report has indicated the presence of a non-protein-
coding antisense RNA corresponding to suspected ASD
locus at 5p14.1 [60]. This antisense RNA was shown to
be strongly increased in post mortem brain tissue of
ASD patients compared to control individuals and
mechanistic studies suggested its role in regulating the
level of the MOESIN protein. Moreover, mutations in
an X-chromosome gene PTCHDI (Patched Domain
Containing 1) were reported in several families with
ASD and intellectual disability. Interestingly, deletion of
5-flanking region of the gene containing a non-coding
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RNA were detected in several males with ASD while not
present in controls [61]. Non-protein-coding antisense
transcripts are reported in the Fragile X Mental Retard-
ation gene (FMRI) locus. Fragile X syndrome (FXS) is the
leading genetic cause of autism and intellectual disability
among boys [62]. Although FXS is considered a mono-
genic disorder, there is evidence that supports an alterna-
tive model in which other ncRNAs contribute to FXS
pathogenesis and to the observed phenotypic variations
among patients [7,63]. We previously reported a ncRNA
transcribed from the FMRI locus, FMR4, that is a 2.4 kb
long, primate-specific transcript residing upstream of
FMRI and which may have an anti-apoptotic function [7].
Therefore, the abundance of RNA produced by transcrip-
tional events from nearly every region of the genome com-
bined with the enrichment of ncRNA transcripts in the
central nervous system make regulatory RNAs a prime
target for mechanistic studies of neurodevelopmental
disorders.

In the current study, we explored and validated the
expression of ncRNAs in several reported ASD-related
genomic loci utilizing bioinformatics and molecular biol-
ogy approaches. Our bioinformatics pipeline allowed us to

identify 71 noncoding antisense RNAs that overlap 38 of
103 genes previously implicated in ASD. These findings
indicate that a large proportion of genomic loci implicated
in ASD have a complex structure with transcription
arising from both the plus and minus strands of DNA.
Antisense transcripts can exert regulatory roles on gene
expression in cis and trans and can be affected by muta-
tions. Knockdown or blockade of endogenous anti-
sense transcripts can have multiple outcomes, with the
corresponding sense transcript concentration showing
either an increase (discordant regulation) or a decrease
(concordant regulation). It has been proposed that dis-
cordant de-repression of sense transcript expression,
resulting in upregulation of sense RNA expression, can
be achieved by removal or steric blockade of many but
not all antisense transcripts. Here, we noticed that two
exonic antisense RNAs, SYNGAPI-AS and PQBPI-AS,
have tissue expression patterns that are discordant to
that of their protein-coding partners, whereas two
other promoter-associated antisense RNAs, NIBPL-AS
and FOXGI-AS, have concordant tissue expression
patterns with their sense genes. These findings suggest
a possible functional regulation exerted by these antisense
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Figure 5 Subcellular localization of antisense transcripts overlapping ASD-related genes. RNAseq analysis of RNA extracted from the
cytoplasm, nucleoplasm and chromatin of SH-SY5Y cells. Expression of SYNGAPI-AS (a), NIBPL-AS (b), VPS13B-AS (c), and B-actin (ACTB) (d) is
shown as fragments per kilobase of transcript per million reads mapped (FPKM).

RNAs on their sense counterparts, a phenomenon already
described for a subset of sense-antisense pairs [21]. Dis-
cordant pairs might interfere with transcription initiation
from opposite strand, alter epigenetic structure of or may
form double-stranded RNAs. Concordant pairs may po-
tentially share the same regulatory elements, alter stability
of sense mRNA or the sense-antisense transcripts are co-
regulated as recently described for the majority of
divergently transcribed long ncRNA/mRNA gene pairs,
expressed during embryonic stem cell differentiation [41].
Thus, the presence of these transcripts in several ASD
candidate genes suggests complex genomic structure of
these loci and warrants functional studies that include
both protein-coding genes and regulatory long noncoding
antisense transcripts.

We demonstrated that 12 of the 18 randomly selected
antisense RNAs overlapping ASD-NATs are expressed in
the human brain where they can have specific regional
expression, suggesting a possible region-specific function
of these RNAs. Differential expression analysis of NATSs
in the PFC, STG and cerebellum revealed a significant
increase in SYNGAPI-AS expression in the PFC and
STG of autistic patients compared to control individuals.
We also observed a statistically significant negative cor-
relation of SYNGAPI-AS and SYNGAPI expression in

the PFC of non-ASD individuals and a similar trend in
the PFC of ASD patients. These data, together with the
observed discordant regulation of SYNGAPI-AS and
SYNGAPI mRNA, suggest a possible scenario in which
upregulation of antisense RNAs lead to the dysregulation
of the protein-coding gene expression.

Many noncoding RNAs function at the chromatin level,
acting as scaffolds for the recruitment of functionally re-
lated epigenetic enzymes to specific loci [35,64-66]. The
expression of these ncRNAs is usually restricted at the nu-
clear and chromatin level where they exert their function.
RNA sequencing analysis of RNA expression in the
cytoplasm, nucleoplasm and chromatin of the SH-SY5Y
neuroblastoma cell line showed that some ASD-NATSs
have clear localization in the nucleoplasm or chromatin.
The peculiar subcellular localization of these antisense
RNAs implies that they may have functional roles in the
nucleus and additionally supports the functionality of
these ncRNAs in the celll. Among the chromatin-
associated antisense RNAs, we found SYNGAPI-AS,
providing additional support to the hypothesis that this
NAT might have a regulatory function on its sense
mRNA partner by mediating the epigenetic modifica-
tions of the regulatory elements controlling SYNGAPI
expression.
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Conclusions

The data presented here provide strong evidence that the
molecular network underlying ASD pathology is far more
complex than anticipated and may involve dysregulation
of ncRNAs. These regulatory elements, which are mostly
ignored from current ASD genetics and functional studies,
must be taken into account in order to obtain a more hol-
istic view of the interplay of factors that lead to the disease
state. We initiated a comprehensive genomic study of
ASD that is not dependent solely on protein coding genes,
and we demonstrate the expression of NATs in ASD-
related genomic loci. Abundant transcriptions of regula-
tory ncRNAs in ASD-related genomic regions indicate
that, in addition to conventional protein coding genes,
disruption of RNA regulatory elements may contribute to
the pathogenesis of ASD. Identification of disease specific
RNAs [15], as well as novel technologies that enable
targeting of these regulatory RNA molecules [40], adds a
new dimension to current efforts investigating novel
therapeutic targets for ASD.
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