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Abstract 

Background Autism spectrum disorder (henceforth autism) is a complex neurodevelopmental condition associated 
with differences in gray matter (GM) volume covariations, as reported in our previous study of the Longitudinal Euro-
pean Autism Project (LEAP) data. To make progress on the identification of potential neural markers and to validate 
the robustness of our previous findings, we aimed to replicate our results using data from the Enhancing Neuroimag-
ing Genetics Through Meta-Analysis (ENIGMA) autism working group.

Methods We studied 781 autistic and 927 non-autistic individuals (6–30 years, IQ ≥ 50), across 37 sites. Voxel-based 
morphometry was used to quantify GM volume as before. Subsequently, we used spatial maps of the two autism-
related independent components (ICs) previously identified in the LEAP sample as templates for regression analyses 
to separately estimate the ENIGMA-participant loadings to each of these two ICs. Between-group differences in par-
ticipants’ loadings on each component were examined, and we additionally investigated the relation between partici-
pant loadings and autistic behaviors within the autism group.

Results The two components of interest, previously identified in the LEAP dataset, showed significant between-
group differences upon regressions into the ENIGMA cohort. The associated brain patterns were consistent with those 
found in the initial identification study. The first IC was primarily associated with increased volumes of bilateral insula, 
inferior frontal gyrus, orbitofrontal cortex, and caudate in the autism group relative to the control group (β = 0.129, 
p = 0.013). The second IC was related to increased volumes of the bilateral amygdala, hippocampus, and parahip-
pocampal gyrus in the autism group relative to non-autistic individuals (β = 0.116, p = 0.024). However, when account-
ing for the site-by-group interaction effect, no significant main effect of the group can be identified (p > 0.590). We did 
not find significant univariate association between the brain measures and behavior in autism (p > 0.085).

Limitations The distributions of age, IQ, and sex between LEAP and ENIGMA are statistically different from each 
other. Owing to limited access to the behavioral data of the autism group, we were unable to further our understand-
ing of the neural basis of behavioral dimensions of the sample.

Conclusions The current study is unable to fully replicate the autism-related brain patterns from LEAP in the ENIGMA 
cohort. The diverse group effects across ENIGMA sites demonstrate the challenges of generalizing the average find-
ings of the GM covariation patterns to a large-scale cohort integrated retrospectively from multiple studies. Further 
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analyses need to be conducted to gain additional insights into the generalizability of these two GM covariation 
patterns.

Keywords Autism, Gray matter volume covariation, Replication

Background
Autism spectrum disorder (autism) is a neurodevelop-
mental condition characterized by social-communicative 
difficulties, accompanied by restrictive and repetitive 
behaviors, and altered sensory processing [2]. The life-
long impact of autism prompts research into the etiology 
underpinning this condition. In the exploration of the 
brain substrates of autism, many anatomical magnetic 
resonance imaging (MRI) studies have reported that 
autism is associated with differences in gray matter (GM) 
morphology (e.g., [28]). However, divergent findings of 
GM morphometry have been demonstrated in multiple 
brain regions (e.g., [6, 11]) complicating the identification 
of neural correlates of autism. For example, former large-
scale studies found either smaller or no changed volume 
with respect to the subcortical areas (e.g., pallidum) in 
autism [28, 31]. Furthermore, previous research reported 
increased or decreased volume in several cortical areas 
(e.g., right inferior temporal gyrus) [6, 11].

We inferred previously that divergent findings can 
partly be attributed to the appliance of mass univariate 
approaches in these studies while not considering the 
structural GM covariations in the brain [22]. Our previ-
ous work introduced independent component analysis 
(ICA) on voxel-based morphometry (VBM) data in a 
deeply phenotyped large autism sample, the EU-AIMS 
Longitudinal European Autism Project (LEAP) [8, 20]. 
There we demonstrated that there are two autism-related 
brain GM covariation patterns involving (1) insula, fron-
tal areas, and caudate, and (2) amygdala, hippocampus, 
and parahippocampal gyrus (PHG). These findings cor-
roborated our inferences that autism is associated with 
the combined influence of several GM regions, and our 
subsequent study additionally supported the stability 
of the GM covariation patterns [21]. The ICA approach 
sensitized our analysis to GM covariation patterns in the 
data rather than regional differences like more traditional 
methods. This allowed us to identify small between-
group effects contributing to progress in the identifica-
tion of neural markers of autism. However, in addition to 
the data analytic strategy, the high neurobiological and 
phenotypic heterogeneity of autism produces obstacles 
to the generalization of a common GM covariation pat-
tern of autism. Accordingly, validation across cohorts is 
crucial to make headway in identifying robust diagnostic 
markers that can facilitate the understanding of autism 
etiology.

Consequently, to test the robustness and validity of 
our previous findings, in this study we aimed to rep-
licate our previous results using a large independ-
ent dataset—the Enhancing Neuroimaging Genetics 
Through Meta-Analysis (ENIGMA) autism cohorts. 
This collaboration was established to unify preprocess-
ing and analytic approaches worldwide, and aggregate 
the genetic and neuroimaging data of autistic and con-
trol individuals of all ages [28]. Within the framework 
of the present study, we adhered closely to the analyti-
cal pipeline of the original study. We utilized the spa-
tial maps of autism-related GM covariation patterns 
identified in the LEAP dataset [22] to extract the rel-
evant participant loadings from individuals within the 
ENIGMA dataset. Thereafter we explored the case–
control difference in GM covariations in ENIGMA. We 
hypothesized that the GM covariation patterns applied 
to an independent dataset would also show case–con-
trol differences—thus showing the generalizability of 
autism-related spatial maps of LEAP to other autism 
cohorts.

Methods and materials
Participants
The participants were part of the ENIGMA autism 
cohort (http:// enigma. ini. usc. edu/ ongoi ng/ enigma- 
asd- worki ng- group), which aims at assembling MRI 
data across a wide range of autism studies. We refer 
to [28] for a detailed description of this cohort. The 
working group implemented a data freeze in December 
2020, at which point there were 1833 autistic individu-
als and 1838 non-autistic individuals (aged 2–64 years 
old) from 56 sites. All individuals with autism were 
included based on clinical diagnosis according to DSM-
IV or DSM-5. In correspondence with the inclusion and 
exclusion criteria of our previous study on the LEAP 
sample [22], we included participants with available 
T1-weighted images, aged 6–30  years old, with avail-
able IQ data and an IQ ≥ 50 (n = 1978). All T1 images 
were checked visually and participants were excluded 
due to structural abnormalities (e.g., enlarged ventri-
cles, part of brain issues missing, and distortions), or 
excessive head motion (n = 31). This resulted in 905 
autistic and 1042 non-autistic individuals from 37 
sites entering the preprocessing pipeline. Local ethical 
approval was acquired in each participating site.

http://enigma.ini.usc.edu/ongoing/enigma-asd-working-group
http://enigma.ini.usc.edu/ongoing/enigma-asd-working-group
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VBM estimation
The acquisition parameters of T1-weighted images at 
each site can be found in Additional file 1: Table S1. We 
implemented the same preprocessing pipeline as pre-
viously [22] to estimate the VBM images of each par-
ticipant using the CAT12 toolbox (https:// dbm. neuro. 
uni- jena. de/ cat/, accessed 25 Jan 2022) in SPM12 (Well-
come Department of Imaging Neuroscience, London, 
UK). All T1-weighted images were first segmented into 
GM, white matter, and cerebrospinal fluid, which were 
then affinely registered to the MNI template. We normal-
ized all segmented GM maps to MNI space using the pre-
viously customized group DARTEL (high-dimensional, 
nonlinear diffeomorphic registration algorithm, [1]) tem-
plate in LEAP generated on LEAP sample [22]. Finally, all 
images were smoothed with a 4 mm full-width half-max 
(FWHM) isotropic Gaussian kernel. A full quality control 
check was applied containing calculations of quantita-
tive quality measures based on the CAT12 pipeline that 
includes mean correlation from the sample homogeneity 
module and weighted overall image quality ratings (IQR), 
and visualizations of the segmentations.

Construction of independent sources of spatial variation
In our previous study, we utilized ICA to decompose all 
participants’ VBM images into 100 spatially independ-
ent sources (or components, ICs) of spatial variation, two 
of which were found to be significantly related to autism 
(we refer these two ICs as L-IC1, L-IC2, Fig. 1). Aligning 
with the objectives of our current study, we performed 
linear regressions (Eqs. 2–4) to apply ICA-derived com-
ponents to the ENIGMA VBM data. In essence, ICA 
operates on the premise of a linear regression model. 
Specifically, we generated the ENIGMA specific par-
ticipant loadings based on knowing the decomposed ICs 
and the VBM maps of ENIGMA sample. To ensure the 
complete configuration estimated for the whole brain, we 
utilized the original set of 100 spatial IC patterns derived 
from LEAP in these linear regression analyses. The LEAP 
100 ICs spatial maps were thresholded to the voxel val-
ues at |z|> 3. The participant loading in the current study 
refers to the individual contribution of each participant 
to each component. The VBM input images were voxel-
wise demeaned and divided by the standard deviation 
across participants, and we subsequently implemented 
regression analyses as follows:

In Eq.  (1), we represent the VBM ICA decomposition 
performed in the LEAP sample, which was implemented 
using MELODIC-ICA [4].

(1)A
L
v×sL

∼ B
L
v×i × C

L
i×sL

where AL is a matrix with all participants’ VBM images 
concatenated from LEAP, and BL and CL are matrices 
containing the estimated independent spatial maps and 
participants’ loadings to each IC, respectively. For com-
pleteness, v denotes the number of voxels on each VBM 
image, sL represents the number of participants in LEAP, 
and i is the number of ICs (i = 100).

To obtain a primary representation of the participant 
loadings in ENIGMA with respect to the spatial maps 
from LEAP (matrix BL

v×i
 ), we used the ENIGMA VBM 

data ( AE ) and Moore–Penrose pseudoinverse [3] to cal-
culate and extracted the corresponding spatial maps (two 
columns from BE

v×100
 ) and participant loadings (two rows 

from ĈE
100×sE

 ) of the two ICs of interest.

Equations  2–4 exhibit the three steps of regression 
analyses in ENIGMA that estimate the unknown matri-
ces using the known ones based on matrix multiplica-
tions. That is, in Eq.  (2) CE was estimated based on the 
transformation of matrix multiplication using known 
spatial maps of the 100 ICs from LEAP ( BL ) and all par-
ticipants’ VBM images from ENIMGA ( AE ). Similarly, 
the estimated spatial maps of the two ICs of interest in 
ENIGMA ( BE ) were calculated using CE and AE . At last, 
the estimated BE was refitted to the linear model (Eq. 4) 
to compute the final participant loadings of the two ICs 
of interest in ENIGMA (two rows from ĈE ) that were 
used in the further statistical analyses. The input spatial 
maps ( BL ) were thresholded at |z|> 3.

Statistical analyses
Dice similarity coefficients were used to quantify the 
overlap between the LEAP and generated ENIGMA spa-
tial maps. For this, the maps were thresholded (|z|> 3) 
and binarized.

To validate our previous findings of autism-related 
independent sources of spatial variation, we used a gen-
eralized linear model (GLM) to investigate group differ-
ences of the two constructed ICs from ENIGMA while 
accounting for the effect of age, sex, IQ, and scanner site. 
Initial analysis revealed striking site effects which led 
us to implement ComBat [12, 14] before analysis in the 
GLM. The GLM after ComBat contained age, sex, IQ, and 
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Ĉ
E
100×sE

== ((BE
v×100)

′ × B
E
v×100)

−1 × (BE
v×100)

′ × A
E
v×sE

;

https://dbm.neuro.uni-jena.de/cat/
https://dbm.neuro.uni-jena.de/cat/
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Fig. 1 The spatial maps of the two components of interest (i.e., group differences) in the current and initial study. The spatial maps were 
thresholded at 3 <|z|< 5. E-IC independent component of ENIGMA, L-IC independent component of LEAP
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site as covariates as well. Subsequently, we performed a 
type-II analysis of deviance to check if site effects were 
still significant on the age-, sex- and IQ-corrected par-
ticipant loadings after ComBat correction (see Additional 
file  1: Section  2). Moreover, to determine the consist-
ency of findings across sites we incorporated a site-by-
diagnosis interaction term as an additional covariate. We 
employed type-III analysis of deviance to evaluate the 
significance of the site-by-diagnosis interaction term on 
the two ICs of interest.

In the current dataset, the total score of the Autism 
Diagnostic Observation Schedule–Generic (ADOS) [18] 
was available in 486 autistic individuals (Additional file 1: 
Table S2), and it was used to examine the univariate rela-
tionship between the brain covariations and autistic trait. 
A GLM was employed to test the association while con-
trolling for age, sex, IQ, and scanner site. Since there were 
limited additional clinical descriptive profiles available in 
the ENIGMA dataset (such as limited access to or avail-
ability of information on subscales of the Autism Diag-
nostic Interview-Revised [26] and the Autism Diagnostic 
Observational Schedule 2 [19]), we were unable to repeat 
the multivariate analysis between brain and behavior 
using canonical correlation analyses in the present study.

Results
We excluded 5 participants due to segmentation failure. 
Furthermore, 218 participants were found to be poten-
tially duplicate with each other as the correlations of their 
VBM images were unusually large (mostly r > 0.990), and 
therefore, these participants were excluded as well. Next, 
we visually checked the images with relatively extreme 
outliers of the image quality ratings (greater than three 
standard deviations from the sample mean). Accord-
ingly, 32 participants required inspection, among which 
18 participants were excluded due to insufficient data 
quality. Additionally, we excluded sites with less than 10 
individuals to retain the statistical power within each site 
after preprocessing (3 sites were excluded, resulting in 
the exclusion of a total of 12 individuals). Consequently, 
there were 770 autistic individuals (667 males and 103 

females, IQ > 50) and 924 non-autistic individuals (693 
males and 231 females, IQ > 70) from 34 sites in the 
final sample (demographic information can be found in 
Table 1 and Additional file 1: Table S2).

Group differences in the isolated two GM covariations
The two components of interest (E-IC1, E-IC2), isolated 
in the ENIGMA dataset, showed significant case–con-
trol differences in participant loadings (E-IC1, β = 0.129, 
p = 0.013; E-IC2, β = 0.116, p = 0.024). The constructed 
brain patterns of these two components in the ENIGMA 
data are shown in Fig. 1, and these brain patterns showed 
high similarities with the L-IC maps both thresholded at 
|z|> 3 and binarized (dice similarity coefficient: IC1: 0.440, 
IC2: 0.519). The E-IC1 was primarily associated with 
varied volumes of bilateral insula, inferior frontal gyrus 
(IFG), orbitofrontal cortex (OFC), and mainly right cau-
date in the autism group relative to controls. The E-IC2 
was related to altered volumes of the bilateral amygdala, 
hippocampus, and parahippocampal gyrus (PHG) in the 
autism group relative to controls. In the analysis incor-
porating the site-by-group effect, we excluded two sites 
that exclusively included autistic individuals (n = 42). The 
analysis revealed significant site-by-group effects for the 
two ICs of interest (E-IC1, G2 = 75.771, p < 0.001; E-IC2, 
G2 = 48.956, p = 0.021). When considering this interac-
tion effect, the group effects no longer exhibited signifi-
cance for either IC (E-IC1, G2 = 0.144, p = 0.704; E-IC2, 
G2 = 0.285, p = 0.593). Figure 2 shows that the group dif-
ferences in each site were diverse, while the differences 
in the LEAP dataset remained consistent across sites. The 
group difference of the ICs in each site can be found in 
Additional file 1: Table S3. After accounting for the site-
by-group effect, we were unable to identify a significant 
main effect of the group in the ENIGMA dataset. Con-
sequently, the stability of the two autism-spatial patterns 
cannot be generalized to the ENIGMA sample. As for the 
application of ComBat to our data, we included diagno-
sis, age, sex, IQ as biological covariates in the analysis for 
sanity check. The results remain consistent with the orig-
inal results. E-IC1 and E-IC2 were found with significant 

Table 1 Characteristic of participants

a There were 486 individuals with autism with available total ADOS score

Characteristic Autism, n = 770 Controls, n = 924 t p value

Range Mean SD Range Mean SD

Age, years 6–30 14.88 5.47 6–30 14.79 5.75 0.33 0.742

IQ 57–149 106.22 16.91 71–149 113.42 12.73 − 9.73 p < 0.001

ADOSa 2–23 11.16 3.97 –

n % n % χ2

Sex, male 667 86.62 693 75.00 35.85 p < 0.001
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group effect (E-IC1, β = 0.127, p = 0.013; E-IC2, β = 0.119, 
p = 0.020). The group effects were not significant when 
considering the interaction effect of site and group 
(interaction effect, E-IC1, G2 = 74.938, p < 0.001; E-IC2, 
G2 = 50.839, p = 0.015; group effect, E-IC1, G2 = 0.133, 
p = 0.715; E-IC2, G2 = 0.233, p = 0.564).

At last, we did not find significant univariate associa-
tions between these two brain ICs and the total ADOS 
score in autism (E-IC1, β = − 0.911, p = 0.196; E-IC2, 
β = − 0.952, p = 0.086).

Discussion
In the current study, we tested the robustness and validity 
of our previous findings [22] in another large independ-
ent sample of autistic and non-autistic individuals—the 

ENIGMA autism cohort. We estimated the case–con-
trol differences of brain covariation patterns in ENIGMA 
based on our previously identified autism-related GM 
covariation patterns in LEAP. In ENIGMA, we repro-
duced the GM covariation spatial configurations after 
thresholding included most of the regions in the insula, 
frontal areas, and caudate and the regions in the amyg-
dala, hippocampus, and PHG. However, the autism-
related effects of these two ICs were not significant after 
considering the effect of site-by-group interactions. The 
scanner sites in ENIGMA demonstrated diverse group 
differences. These two IC patterns therefore cannot be 
generalized in the current settings. Corresponding to 
the previous VBM studies, the volumes of these brain 
areas were found to either be decreased, increased, or 

Fig. 2 Distribution of the age-, sex-, IQ- and site-corrected (ComBat) participant loadings of the two components of interest across whole 
sample and within each site of ENIGMA. The forest plots demonstrate the mean and 95% confidential interval of each group in each site. The size 
of the mean marker ranges according to the sample size within each site for each group. The white circles in boxplots show the mean of each 
group across whole sample. E-IC independent component of ENIGMA, L-IC independent component of LEAP
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unaltered in autistic individuals compared to non-autistic 
controls across different samples (e.g., [6, 11, 23]).

The overall non-significant results could be attributed 
to many factors. First, the large ENIGMA dataset is lim-
ited by large cross site differences including variation in 
scanner type, field strength and scan acquisition param-
eters. Second, site effects are not limited to scan acquisi-
tion parameters but also to variation in sample selection 
across sites. Different distribution of sample characteris-
tics across sites, such as sex, cognitive level, or severity 
of autistic behaviors, was suggested as another potential 
confounder [29]. In LEAP, while still faced with a multi-
site cohort, scan parameters were prospectively harmo-
nized, sample demographics were matched across sites 
and identical testing protocols were utilized thereby 
reducing the confounding issues present in ENIGMA. 
Nevertheless, dual regression operates on an individual 
participant basis, ensuring the output is not influenced by 
the inter-site variation. Moreover, the statistical assess-
ments of group differences were conducted on the nor-
malized participant loadings, thereby disregarding any 
site-specific scaling differences in the analyses. Addition-
ally, we addressed site differences by utilizing ComBat, 
which has been shown to demonstrate good performance 
in controlling for site effects [12]. The site differences in 
our study have been effectively considered while pre-
serving biologically meaningful variations. Despite these 
efforts, it cannot be conclusively stated that the failure of 
replication is entirely unrelated to the site differences.

The ENIGMA sample used in the current study was 
selected to retain a similar demographic structure to 
that of the LEAP sample (i.e., with same age and IQ 
ranges). However, achieving full feasibility was not pos-
sible due to the absence of individuals in the control 
group of ENIGMA with an IQ below 70. Additionally, 
attempting to maintain a representative sample of autis-
tic individuals, we avoided matching ENIGMA sample to 
LEAP. Consequently, there are notable differences in the 
descriptive distributions between the two samples (please 
see Additional file 1: Table S4). Moreover, in ENIGMA, 
limited information of the co-occurring psychiatric con-
ditions (e.g., attention deficit hyperactivity disorder, anxi-
ety) and medication use could impact the outcomes.

When site effects were effectively removed, the results 
between diagnostic groups significantly differed across 
sites in the current study. The discrepancy of results var-
ies within sites may relate to the high clinical, biological, 
and etiologic heterogeneity within autistic individuals 
[17]. For our analysis, categorical groups were defined 
according to clinical diagnosis, which depended on the 
observations of the behaviors under a definition of autism 
in the developing diagnostic criteria (e.g., DSM-IV to 
DSM-5). The changing criteria unavoidably increased the 

heterogeneity within those with an autism diagnosis, at 
least at the level of behavioral manifestations, and likely 
also within research populations—especially those col-
lected over longer periods. For instance, the DSM-5 cri-
teria consolidated autism as a spectrum with excluding 
the language impairments and including altered sensory 
responses as a defined group of traits [2]. Additionally, 
biological phenotypes (endpoints), such as GM volume 
and behavioral phenotypes, can be traced back to diverse 
mechanisms (i.e., equifinality in the developmental psy-
chopathology) [10, 27]. Moreover, the genetic contribu-
tions to autism are extremely complex. These include 
inherited and/or de novo genetic mutations, de novo or 
inherited copy number variations, common genetic vari-
ants, and associations with syndromal forms of autism 
[9, 25]. In addition, there are multiple other suggested 
factors, such as advanced maternal and paternal age and 
prenatal exposure to sex steroids, or medications like val-
proate [5]. The etiological and behavioral heterogeneity 
of autism increases the difficulty of identifying a general 
GM pattern for autism and of replicating them as aver-
age group effects may be hidden by individual variability 
varying between sites.

Our findings here reproduced the GM covariation spa-
tial configurations that we found to be related to autism 
in LEAP. These covaried brain areas have been reported 
relating to autism widely in previous studies and have pri-
marily been implicated in autism-related social and non-
social behaviors [7, 13, 15, 16, 24]. The importance of the 
covariations of insula, IFG and OFC was emphasized in 
our multimodal study [21]. The gray matter covariations 
patterns of these regions shared variance with diffusion 
weighted imaging metrics and related to autism as well. 
In our previous study, we used a canonical correlation 
analysis to address within group variability and relate 
GM covariation patterns to various behavioral measures. 
Unfortunately, this was not an option with the ENIGMA 
data as only limited continuous measures of behavior 
were available.

On the one hand, big datasets, like ENIGMA, are 
exploited as the increased sample size improves the pos-
sibility of identifying effects with small effect size. How-
ever on the other hand, the retrospective pooling of data 
from multiple studies can introduce more heterogeneity 
than the increase in power can offset. While heterogene-
ity may seem like a hindrance to research it is not and it 
is important to involve a heterogenous ‘representative’ 
autistic sample with not only large sample size but multi-
ple levels of data [17]. Utilizing multivariate/multimodal 
approaches in future studies and focusing on subtyping 
or continuous behavioral measures, rather than categori-
cal group differences, may be more promising avenues 
for biomarker discovery and validation. Additionally, 
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future studies dedicated to individual differences in 
autism probing heterogeneity could provide more insight 
for biomarker discovery, for example, normative mod-
eling, which has been applied to the LEAP cohort [30]. 
The effect of group differences in cortical measure may 
vary across different subgroups.

Our findings should be interpreted at the background 
of several limitations. As we selected only participants 
with available IQ estimates, this probably induced some 
sample selection bias. Sex distribution, and IQ did not 
match across autistic and non-autistic groups, however 
we controlled for the effects of these two factors in the 
analyses. Moreover, the distributions of age, IQ and sex 
between LEAP and ENIGMA are statistically different 
from each other. Therefore, more validation analyses in 
the future will be done in the IQ and sex matched sub-
samples. Additionally, small samples and/or autism-only 
samples at multiple sites could potentially influence the 
outcome. Owing to limited access to the behavioral data 
of the autism group, we were unable to further our under-
standing of the dimensional behaviors of the sample.

In summary, the current study is unable to repli-
cate the autism-related brain patterns from LEAP to 
ENIGMA cohorts. The diverse group effects across sites 
of ENIGMA demonstrate the challenges of generaliz-
ing the average findings of the GM covariation patterns 
to another large-scale cohort integrated retrospectively 
from multiple studies. Subsequent studies could utilize a 
sample with more comparable demographic information 
or prioritize subtyping to gain additional insights into the 
generalizability of these two GM covariation patterns.

Abbreviations
ADOS  Autism Diagnostic Observation Schedule–Generic
ENIGMA  Enhancing Neuroimaging Genetics Through Meta-Analysis
FWHM  Full-width half-max
GLM  Generalized linear model
GM  Gray matter
IC  Independent component
ICA  Independent component analysis
IFG  Inferior frontal gyrus
IQR  Image quality ratings
LEAP  Longitudinal European Autism Project
MRI  Magnetic resonance imaging
OFC  Orbitofrontal cortex
PHG  Parahippocampal gyrus
VBM  Voxel-based morphometry

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13229- 024- 00583-8.

Additional file 1. Supplementary Tables and Figure.

Acknowledgements
We thank all participants and their families for participating in this study. We 
gratefully acknowledge the contributions of all members of the ENIGMA 

autism working group: Daan van Rooij, Evdokia Anagnostou, Celso Arango, 
Guillaume Auzias, Marlene Behrmann, Geraldo F. Busatto, Sara Calderoni, 
Eileen Daly, Christine Deruelle, Adriana Di Martino, Ilan Dinstein, Fabio Luis 
Souza Duran, Sarah Durston, Christine Ecker, Damien Fair, Jennifer Fedor, 
Jackie Fitzgerald, Christine M. Freitag, Louise Gallagher, Ilaria Gori, Shlomi Haar, 
Liesbeth Hoekstra, Neda Jahanshad, Maria Jalbrzikowski, Joost Janssen, Jason 
Lerch, Beatriz Luna, Mauricio Moller Martinho, Jane McGrath, Filippo Muratori, 
Clodagh M. Murphy, Declan G. M. Murphy, Kirsten O’Hearn, Bob Oranje, Mara 
Parellada, Alessandra Retico, Pedro Rosa, Katya Rubia, Devon Shook, Margot 
Taylor, Paul M. Thompson, Michela Tosetti, Gregory L. Wallace, Fengfeng Zhou, 
Jan K. Buitelaar.

Author contributions
DvR and JKB conceptualized and developed analysis protocols of ENIGMA 
ASD working group. TM ran analyses, visualized the findings, wrote and 
revised the draft; AL and NJF conceptualized and supervised the analysis, and 
revised the manuscript; DLF revised the draft; CFB and JKB supervised and 
revised the manuscript. All authors read and approved the final manuscript.

Funding
ENIGMA received funding from NIH Consortium Grant U54 EB020403 to Paul 
Thompson, supported by a cross-NIH alliance that funds Big Data to Knowl-
edge Centers of Excellence (BD2K). This research was further supported by 
the European Community’s Seventh Framework Programme (FP7/2007–2013) 
under grant agreement number 278948 (TACTICS), and the Innovative Medi-
cines Initiative Joint Undertaking under grant agreement number 115300 
(EU-AIMS), resources of which are composed of financial contributions from 
the European Union’s Seventh Framework Programme (FP7/2007–2013) 
and the European Federation of Pharmaceutical Industries and Associations 
companies’ in-kind contribution. TM is supported by a China Scholarship 
Council grant (No 201806010408). DLF is supported by funding from the 
European Union’s Horizon 2020 research and innovation program under the 
Marie Skłodowska-Curie grant agreement No 101025785. This work has been 
further supported by the European Union Seventh Framework Programme 
Grant Nos. 602805 (AGGRESSOTYPE) (to JKB), 603016 (MATRICS) (to JKB), and 
278948 (TACTICS) (to JKB); European Community’s Horizon 2020 Programme 
(H2020/2014–2020) Grant Nos. 643051 (MiND) (to JKB), 642996 (BRAINVIEW) 
(to JKB) and 847818 (CANDY) (to JKB and CFB); the Netherlands Organization 
for Scientific Research VICI Grant No. 2020/TTW/00836465 (to CFB); Wellcome 
Trust Collaborative Award Grant No. 215573/Z/19/Z (to CFB).

Availability of data and materials
This study utilized 34 distinct datasets collected globally, each to diverse 
consent procedures and regulatory authorities. Access requests to these 
datasets will be evaluated in accordance with the corresponding consent 
agreements, guidelines, and regulations. You can submit requests through the 
ENIGMA consortium’s ASD working group at http:// enigma. ini. usc. edu/ ongoi 
ng/ enigma- asd- worki ng- group/.

Declarations

Ethics approval and consent to participate and for publication
The local ethical approval to carry out the research was granted in each data 
site, and all contributing sites in the current study had local ethical approval to 
share the anonymized individual data. The informed consent for participation 
and publication was obtained from all individuals.

Competing interests
CFB is director and shareholder in SBGNeuro Ltd. JKB has been a consultant 
to, advisory board member of, and a speaker for Janssen Cilag BV, Eli Lilly, 
Shire, Lundbeck, Roche, and Servier. He is not an employee of any of these 
companies, and not a stock shareholder of any of these companies. He has 
no other financial or material support, including expert testimony, patents 
or royalties. The present work is unrelated to the above grants and relation-
ships. The other authors report no biomedical financial interests or potential 
conflicts of interest.

Author details
1 Department of Cognitive Neuroscience, Donders Institute for Brain, Cogni-
tion and Behaviour, Radboud University Medical Centre, Kapittelweg 29, 

https://doi.org/10.1186/s13229-024-00583-8
https://doi.org/10.1186/s13229-024-00583-8
http://enigma.ini.usc.edu/ongoing/enigma-asd-working-group/
http://enigma.ini.usc.edu/ongoing/enigma-asd-working-group/


Page 9 of 10Mei et al. Molecular Autism            (2024) 15:3  

6525EN Nijmegen, The Netherlands. 2 Department of Psychology, Utrecht Uni-
versity, Utrecht, The Netherlands. 3 Methods of Plasticity Research, Department 
of Psychology, University of Zurich, Zurich, Switzerland. 4 Centre for Functional 
MRI of the Brain, University of Oxford, Oxford, UK. 5 Karakter Child and Adoles-
cent Psychiatry University Centre, Nijmegen, The Netherlands. 

Received: 5 January 2024   Accepted: 8 January 2024

References
 1. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroim-

age. 2007;38:95–113.
 2. American Psychiatric Association. Diagnostic and statistical manual of 

mental disorders. 5th ed. Author: Arlington; 2013.
 3. Barata JCA, Hussein MS. The Moore–Penrose pseudoinverse: a tutorial 

review of the theory. Braz J Phys. 2012;42:146–65.
 4. Beckmann CF, Smith SM. Probabilistic independent component analysis 

for functional magnetic resonance imaging. IEEE Trans Med Imaging. 
2004;23:137–52.

 5. Bolte S, Girdler S, Marschik PB. The contribution of environmental 
exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci. 
2019;76:1275–97.

 6. Carlisi CO, Norman LJ, Lukito SS, Radua J, Mataix-Cols D, Rubia K. Com-
parative multimodal meta-analysis of structural and functional brain 
abnormalities in autism spectrum disorder and obsessive-compulsive 
disorder. Biol Psychiatry. 2017;82:83–102.

 7. Chan MMY, Han YMY. Differential mirror neuron system (MNS) activation 
during action observation with and without social-emotional compo-
nents in autism: a meta-analysis of neuroimaging studies. Mol Autism. 
2020;11:72.

 8. Charman T, Loth E, Tillmann J, Crawley D, Wooldridge C, Goyard D, Ahmad 
J, Auyeung B, Ambrosino S, Banaschewski T, Baron-Cohen S, Baumeister 
S, Beckmann C, Bolte S, Bourgeron T, Bours C, Brammer M, Brandeis D, 
Brogna C, de Bruijn Y, Chakrabarti B, Cornelissen I, Acqua FD, Dumas G, 
Durston S, Ecker C, Faulkner J, Frouin V, Garces P, Ham L, Hayward H, Hipp 
J, Holt RJ, Isaksson J, Johnson MH, Jones EJH, Kundu P, Lai MC, D’Ardhuy 
XL, Lombardo MV, Lythgoe DJ, Mandl R, Mason L, Meyer-Lindenberg A, 
Moessnang C, Mueller N, O’Dwyer L, Oldehinkel M, Oranje B, Pandina 
G, Persico AM, Ruggeri B, Ruigrok ANV, Sabet J, Sacco R, Caceres ASJ, 
Simonoff E, Toro R, Tost H, Waldman J, Williams SCR, Zwiers MP, Spooren 
W, Murphy DGM, Buitelaar JK. The EU-AIMS Longitudinal European 
Autism Project (LEAP): clinical characterisation. Mol Autism. 2017;8:27.

 9. Choi L, An JY. Genetic architecture of autism spectrum disorder: 
lessons from large-scale genomic studies. Neurosci Biobehav Rev. 
2021;128:244–57.

 10. Cicchetti D, Toth SL. The past achievements and future promises of devel-
opmental psychopathology: the coming of age of a discipline. J Child 
Psychol Psychiatry. 2009;50:16–25.

 11. DeRamus TP, Kana RK. Anatomical likelihood estimation meta-analysis of 
grey and white matter anomalies in autism spectrum disorders. Neuroim-
age Clin. 2015;7:525–36.

 12. Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, Adams P, 
Cooper C, Fava M, McGrath PJ, McInnis M, Phillips ML, Trivedi MH, Weiss-
man MM, Shinohara RT. Harmonization of cortical thickness measure-
ments across scanners and sites. Neuroimage. 2018;167:104–20.

 13. Habata K, Cheong Y, Kamiya T, Shiotsu D, Omori IM, Okazawa H, Jung 
M, Kosaka H. Relationship between sensory characteristics and corti-
cal thickness/volume in autism spectrum disorders. Transl Psychiatry. 
2021;11:616.

 14. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microar-
ray expression data using empirical Bayes methods. Biostatistics. 
2007;8:118–27.

 15. Klapwijk ET, Aghajani M, Colins OF, Marijnissen GM, Popma A, van Lang 
ND, van der Wee NJ, Vermeiren RR. Different brain responses during 
empathy in autism spectrum disorders versus conduct disorder and 
callous-unemotional traits. J Child Psychol Psychiatry. 2016;57:737–47.

 16. Langen M, Bos D, Noordermeer SD, Nederveen H, van Engeland H, 
Durston S. Changes in the development of striatum are involved in 
repetitive behavior in autism. Biol Psychiatry. 2014;76:405–11.

 17. Lombardo MV, Lai MC, Baron-Cohen S. Big data approaches to decom-
posing heterogeneity across the autism spectrum. Mol Psychiatry. 
2019;24:1435–50.

 18. Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles 
A, Rutter M. The autism diagnostic observation schedule-generic: a 
standard measure of social and communication deficits associated with 
the spectrum of autism. J Autism Dev Disord. 2000;30:205–23.

 19. Lord C, Rutter M, DiLavore PC, Risi S, Gotham K, Bishop S. Autism diag-
nosticobservation schedule, second edition (ADOS-2) manual (part I): 
modules 1–4. Torrance: Western Psychological Services; 2012.

 20. Loth E, Charman T, Mason L, Tillmann J, Jones EJH, Wooldridge C, Ahmad 
J, Auyeung B, Brogna C, Ambrosino S, Banaschewski T, Baron-Cohen S, 
Baumeister S, Beckmann C, Brammer M, Brandeis D, Bolte S, Bourgeron 
T, Bours C, de Bruijn Y, Chakrabarti B, Crawley D, Cornelissen I, Acqua FD, 
Dumas G, Durston S, Ecker C, Faulkner J, Frouin V, Garces P, Goyard D, 
Hayward H, Ham LM, Hipp J, Holt RJ, Johnson MH, Isaksson J, Kundu P, Lai 
MC, D’Ardhuy XL, Lombardo MV, Lythgoe DJ, Mandl R, Meyer-Lindenberg 
A, Moessnang C, Mueller N, O’Dwyer L, Oldehinkel M, Oranje B, Pandina 
G, Persico AM, Ruigrok ANV, Ruggeri B, Sabet J, Sacco R, Caceres ASJ, 
Simonoff E, Toro R, Tost H, Waldman J, Williams SCR, Zwiers MP, Spooren 
W, Murphy DGM, Buitelaar JK. The EU-AIMS Longitudinal European 
Autism Project (LEAP): design and methodologies to identify and validate 
stratification biomarkers for autism spectrum disorders. Mol Autism. 
2017;8:24.

 21. Mei T, Forde NJ, Floris DL, Dell’Acqua F, Stones R, Ilioska I, Durston S, 
Moessnang C, Banaschewski T, Holt RJ, Baron-Cohen S, Rausch A, Loth E, 
Oakley B, Charman T, Ecker C, Murphy DGM, group, Eu-Aims Leap, Beck-
mann CF, Llera A, Buitelaar JK. Autism is associated with interindividual 
variations of gray and white matter morphology. Biol Psychiatry Cogn 
Neurosci Neuroimaging. 2022;8:1084–93.

 22. Mei T, Llera A, Floris DL, Forde NJ, Tillmann J, Durston S, Moessnang C, 
Banaschewski T, Holt RJ, Baron-Cohen S, Rausch A, Loth E, Dell’Acqua F, 
Charman T, Murphy DGM, Ecker C, Beckmann CF, Buitelaar JK, group, Eu-
Aims Leap. Gray matter covariations and core symptoms of autism: the 
EU-AIMS Longitudinal European Autism Project. Mol Autism. 2020;11:86.

 23. Pappaianni E, Siugzdaite R, Vettori S, Venuti P, Job R, Grecucci A. Three 
shades of grey: detecting brain abnormalities in children with autism 
using source-, voxel- and surface-based morphometry. Eur J Neurosci. 
2018;47:690–700.

 24. Patriquin MA, DeRamus T, Libero LE, Laird A, Kana RK. Neuroanatomical 
and neurofunctional markers of social cognition in autism spectrum 
disorder. Hum Brain Mapp. 2016;37:3957–78.

 25. Richards C, Jones C, Groves L, Moss J, Oliver C. Prevalence of autism spec-
trum disorder phenomenology in genetic disorders: a systematic review 
and meta-analysis. Lancet Psychiatry. 2015;2:909–16.

 26. Rutter M, Le Couteur A, Lord C. Autism diagnostic interview-revised. Los 
Angeles: Western Psychological Services; 2003.

 27. Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, 
Murtha MT, Bal VH, Bishop SL, Dong S, Goldberg AP, Jinlu C, Keaney JF 
3rd, Klei L, Mandell JD, Moreno-De-Luca D, Poultney CS, Robinson EB, 
Smith L, Solli-Nowlan T, Su MY, Teran NA, Walker MF, Werling DM, Beaudet 
AL, Cantor RM, Fombonne E, Geschwind DH, Grice DE, Lord C, Lowe JK, 
Mane SM, Martin DM, Morrow EM, Talkowski ME, Sutcliffe JS, Walsh CA, Yu 
TW, Autism Sequencing, Consortium, Ledbetter DH, Martin CL, Cook EH, 
Buxbaum JD, Daly MJ, Devlin B, Roeder K, State MW. Insights into autism 
spectrum disorder genomic architecture and biology from 71 risk loci. 
Neuron. 2015;87:1215–33.

 28. van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, Busatto 
GF, Calderoni S, Daly E, Deruelle C, Di Martino A, Dinstein I, Duran FLS, 
Durston S, Ecker C, Fair D, Fedor J, Fitzgerald J, Freitag CM, Gallagher L, 
Gori I, Haar S, Hoekstra L, Jahanshad N, Jalbrzikowski M, Janssen J, Lerch J, 
Luna B, Martinho MM, McGrath J, Muratori F, Murphy CM, Murphy DGM, 
O’Hearn K, Oranje B, Parellada M, Retico A, Rosa P, Rubia K, Shook D, Taylor 
M, Thompson PM, Tosetti M, Wallace GL, Zhou F, Buitelaar JK. Corti-
cal and subcortical brain morphometry differences between patients 
with autism spectrum disorder and healthy individuals across the 
lifespan: results from the ENIGMA ASD working group. Am J Psychiatry. 
2018;175:359–69.

 29. Yamashita A, Yahata N, Itahashi T, Lisi G, Yamada T, Ichikawa N, Takamura 
M, Yoshihara Y, Kunimatsu A, Okada N, Yamagata H, Matsuo K, Hashimoto 
R, Okada G, Sakai Y, Morimoto J, Narumoto J, Shimada Y, Kasai K, Kato N, 



Page 10 of 10Mei et al. Molecular Autism            (2024) 15:3 

Takahashi H, Okamoto Y, Tanaka SC, Kawato M, Yamashita O, Imamizu 
H. Harmonization of resting-state functional MRI data across multiple 
imaging sites via the separation of site differences into sampling bias and 
measurement bias. PLoS Biol. 2019;17: e3000042.

 30. Zabihi M, Oldehinkel M, Wolfers T, Frouin V, Goyard D, Loth E, Charman T, 
Tillmann J, Banaschewski T, Dumas G, Holt R, Baron-Cohen S, Durston S, 
Bolte S, Murphy D, Ecker C, Buitelaar JK, Beckmann CF, Marquand AF. Dis-
secting the heterogeneous cortical anatomy of autism spectrum disorder 
using normative models. Biol Psychiatry Cogn Neurosci Neuroimaging. 
2019;4:567–78.

 31. Zhang W, Groen W, Mennes M, Greven C, Buitelaar J, Rommelse N. Revisit-
ing subcortical brain volume correlates of autism in the ABIDE dataset: 
effects of age and sex. Psychol Med. 2018;48:654–68.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Gray matter covariations in autism: out-of-sample replication using the ENIGMA autism cohort
	Abstract 
	Background 
	Methods 
	Results 
	Limitations 
	Conclusions 

	Background
	Methods and materials
	Participants
	VBM estimation
	Construction of independent sources of spatial variation
	Statistical analyses

	Results
	Group differences in the isolated two GM covariations

	Discussion
	Acknowledgements
	References


