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Abstract 

Background Repetitive and restricted behaviors and interests (RRBI) are core symptoms of autism with a complex 
entity and are commonly categorized into ‘motor‑driven’ and ‘cognitively driven’. RRBI symptomatology depends 
on the individual’s clinical environment limiting the understanding of RRBI physiology, particularly their associated 
neuroanatomical structures. The complex RRBI heterogeneity needs to explore the whole RRBI spectrum by integrat‑
ing the clinical context [autistic individuals, their relatives and typical developing (TD) individuals]. We hypothesized 
that different RRBI dimensions would emerge by exploring the whole spectrum of RRBI and that these dimensions are 
associated with neuroanatomical signatures—involving cortical and subcortical areas.

Method A sample of 792 individuals composed of 267 autistic subjects, their 370 first‑degree relatives and 155 TD 
individuals was enrolled in the study. We assessed the whole patterns of RRBI in each individual by using the Repeti‑
tive Behavior Scale‑Revised and the Yale‑Brown Obsessive Compulsive Scale. We estimated brain volumes using MRI 
scanner for a subsample of the subjects (n = 152, 42 ASD, 89 relatives and 13 TD). We first investigated the dimension‑
ality of RRBI by performing a principal component analysis on all items of these scales and included all the sampling 
population. We then explored the relationship between RRBI‑derived factors with brain volumes using linear regres‑
sion models.

Results We identified 3 main factors (with 30.3% of the RRBI cumulative variance): Factor 1 (FA1, 12.7%) reflected 
mainly the ‘motor‑driven’ RRBI symptoms; Factor 2 and 3 (respectively, 8.8% and 7.9%) gathered mainly Y‑BOCS 
related items and represented the ‘cognitively driven’ RRBI symptoms. These three factors were significantly associ‑
ated with the right/left putamen volumes but with opposite effects: FA1 was negatively associated with an increased 
volume of the right/left putamen conversely to FA2 and FA3 (all uncorrected p < 0.05). FA1 was negatively associated 
with the left amygdala (uncorrected p < 0.05), and FA2 was positively associated with the left parietal structure (uncor‑
rected p = 0.001).
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Introduction
Autism Spectrum Disorders (ASD) are complex condi-
tions characterized by atypical social communication, as 
well as restricted or stereotyped behaviors and interests 
(RRBI) (DSM-5, APA), affecting 1–2% of individuals from 
the general population [69]. One source of this complex-
ity relies on the heterogeneity of symptoms depicted by 
autistic individuals, specifically when considering the 
RRBI. These symptoms could be dichotomized in ‘motor-
driven’ symptoms gathering the stereotyped movements 
(e.g. head banging) and the repetitive behaviors, and in 
‘cognitively driven’ symptoms, including obsessive–com-
pulsive like symptoms and cognitive inflexibility [39, 56]. 
The determinants of this differential expression remain 
largely unknown, although the individual’s cognitive skills 
seem to be a major modulator of RRBI. Autistic individu-
als with a comorbid intellectual deficiency predominantly 
display motor-related symptoms, cognitively driven 
symptoms, if they exist, are probably underestimated 
due to a reporting bias. In contrast, autistic individu-
als without such deficiency express more those which 
are cognitively driven [15]. Other modulators affect the 
expressiveness of these symptoms, such as the indi-
vidual’s age [18] or the associated social communication 
skills themselves. Studies exploring the familial aggrega-
tion of RRBI in autism report that the repetitive/stereo-
typed behaviors are mainly observed in probands and the 
obsessive-like symptoms in their non-affected relatives, 
independently of their cognitive abilities [29, 67]. The 
apparent dichotomy of the RRBI is also reinforced by the 
use of distinct screening tools, opposing those dedicated 
to the exploration of RRBI in the context of autism, such 
as the Repetitive Behaviors Scale-Revised (RBS-R, [35]) 
and those measuring them in individuals with obsessive–
compulsive disorders with the Y-BOCS as a gold stand-
ard [23]. However, contrary to an approach divided into 
repetitive behaviors for some individuals and obsessive 
symptoms for others, some authors have developed new 
tools to consider the wide diversity of RRBI better and 
offer a unifying approach to these symptoms. Although 
preliminary and performed in the general population, one 
study showed a high intra-familial correlation of RRBI, 
whether the index case has associated autistic symptoms 
[18]. These findings encourage researchers to reconsider 
the nosology of RRBI and to adopt a more dimensional 
approach than a categorical to these symptoms.

It also seems consistent with what the literature reports 
about the involvement of a similar pattern of brain struc-
tures in RRBI. Animal models suggest a critical role of 
the cortico-basal-ganglia-thalamo-cortical loop in the 
emergence and maintenance of RRBI [12]. Induced dele-
tion of Shank3 (SHANK3 being a major gene associated 
with autism) in inhibitory neurons of the striatum results 
in repetitive/stereotyped-like behaviors, and conversely, 
deletion of Shank3 in excitatory neurons of the prefrontal 
cortex results in excessive self-grooming behaviors con-
sidered as an equivalent of obsessive–compulsive symp-
toms [4]. In humans, studies exploring RRBI in autistic 
individuals also report abnormalities in subcortical 
structures, specifically the striatum. For example, using 
T1-weighted anatomical images from the Autism Brain 
Imaging Data Exchange, Schuetze et  al. [58] reported 
that stereotyped behaviors were positively associated 
with increased bilateral globus pallidus surface area. 
Paralleling these findings, the ENIGMA-OCD working 
group observed larger thalamic volume affecting the lat-
eral, pulvinar, and ventral regions in children with OCD 
[66]. However, another mega-analysis by the OCD Brain 
Imaging Consortium (OBIC) pointed more toward the 
ventrolateral and dorsomedial prefrontal in obsessive–
compulsive behaviors in humans [20]. Moreover, multiple 
strands of evidence indicate deviations in brain growth 
and maturation trajectories rather than static alterations 
in autism and OCD [25, 41, 49].

Altogether the literature presents a certain coherence 
between the results of clinical, genetic and brain imag-
ing studies suggesting a commonality of the RRBI with 
a differential expression according to the individual phe-
notypic characteristics. To better understand the hetero-
geneity and familial patterns of RRBI in autism, as well 
as the structural brain abnormalities that underlie them, 
we performed this study exploring RRBI in a sample of 
792 individuals gathering autistic patients (n = 267), their 
non-affected first-degree relatives (n = 370) and typically 
developing individuals from the general population (TD) 
(n = 155). To embrace the diversity of the whole pat-
tern of RRBI, we explored each enrolled individual with 
the Repetitive Behavior Scale-Revised (RBS-R) [35] and 
the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) 
[23], both considered as gold standard questionnaires to 
explore repetitive/stereotyped behaviors and obsessive–
compulsive symptoms in clinical populations. We then 

Conclusion Our results suggested 3 coherent RRBI dimensions involving the putamen commonly and other struc‑
tures according to the RRBI dimension. The exploration of the putamen’s integrative role in RSBI needs to be strength‑
ened in further studies.
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ran a factor analysis on all RRBI to apprehend further the 
distribution of these symptoms independently of the sub-
ject’s status (affected, non-affected relatives, or typically 
developing participants). We finally performed a multiple 
linear regression model on a subsample of 152 subjects 
to explore the relationship between these RRBI-related 
factors, and the cortical/subcortical brain volumes based 
on MRI. We hypothesized that two main factors would 
emerge from the factor analysis, mirroring the dichoto-
mized model of RRBI (repetitive/stereotyped vs obses-
sive/compulsive symptoms), but displaying common and 
specific associations with brain structures of the cortico-
striatal-thalamo-cortical loop.

Methods
Ethics
The study was granted approval by the local Ethics Com-
mittee (ref: 2008-A00019-46) and registered in a public 
trial registry (NCT02628808). The study was carried out 
in accordance with Good Clinical Practice (ICH GCP) 
standards. Written informed consent was obtained from 
all participants. For patients who were unable to consent 
for themselves, a parent or legal guardian consented to 
the study on their behalf.

Participants
A sample of 792 individuals composed of 267 autistic 
subjects; their 370 first-degree relatives and 155 indi-
viduals from the general population with typical devel-
opment (TD) were enrolled in the study at the Child 

and Adolescent Psychiatry Department, Robert Debre 
Hospital, Paris (France). Their demographic and clini-
cal characteristics are reported in Table 1. Participants’ 
clinical assessment procedures followed previously 
described methods [39]. ASD diagnosis was based on 
DSM-IV-TR/5 criteria and made by summing the infor-
mation from the Autism Diagnosis Interview-Revised 
(ADI-R), the Autism Diagnostic Observation Scale—
second edition (ADOS-2), and clinical reports from 
experts in the field, who made the final diagnostic deci-
sion. The non-verbal cognitive abilities were assessed 
using the Wechsler Intelligence Scales adapted to age 
or the Raven’s Progressive Matrices (RPM) for those 
with poor (or lack) verbal abilities [52]. Those with low, 
mild, or below intellectual disabilities were excluded 
(IQ < 70).

Concerning first-degree relatives and TD, the pres-
ence of autistic symptoms was assessed by using the 
Social Responsiveness Scale-II (SRS-II) [14]. We also 
explored their Axis I psychiatric conditions (in accord-
ance with DSM-IV-TR/5 criteria) using semi-stand-
ardized direct interviews, the Schedule for Affective 
Disorders and Schizophrenia for School-Age Children, 
Present and Lifetime version (K-SADS-PL) [33] for sub-
jects below 18-year-old or the Diagnostic Interview for 
Genetic Studies (DIGS) [50] for adults. The non-verbal 
cognitive abilities of first-degree relatives and TD were 
estimated with Raven’s Progressive Matrices (RPM) 
[52]. Those with low, mild or below intellectual disabili-
ties were excluded (IQ < 70).

Table 1 Clinical and demographic characteristics of the individuals enrolled in the study

ASD Autistic individuals, OCD Obsessive–Compulsive Disorder, AD Anxiety Disorders, TD Tic Disorders, TS Tourette Syndrome, NVIQ Non-verbal IQ, ADI-A ADI-Social 
interaction domain score, ADI-B ADI-Communication domain score, ADI-C Stereotypes and restricted interests domain score, ADI-D ADI-before 36 months symptoms 
score, ADOS-CSS ADOS-Calibrated severity score

*Chi-squared value

ASD
(N = 267)

Relatives
(N = 370)

Controls
(N = 155)

R2 F p value

Age 17.7 (12.9) 38.0 (17.2) 38.0 (14.9) 0.3 139.4  < 0.001

Sex—male ratio (%, n) 86%, 230 57%, 174 55%, 86 113.4* –  < 0.001

OCD (%, n) 11.61%, 31 3.24%, 12 0.65%, 1 0.09 –  < 0.001

AD (%, n) 14.23%, 38 10%, 37 1.94%, 3 0.06 –  < 0.001

TD (%, n) 10.49%, 28 5.95%, 22 4.52%, 7 0.06 –  < 0.001

TS (%, n) 1.49%, 4 0.27%, 1 – 0.08 – 0.15

NVIQ 95.6 (23.2) 113.3 (14.7) 100.2 (19.8) 0.1 32.0  < 0.001

SRS T‑score 72.2 (12.6) 46.0 (8.5) 44.4 (7.8) 0.6 556.6  < 0.001

ADI—A 16.4 (9.5) – – – – –

ADI—B 11.5 (7.8) – – – – –

ADI—C 4.9 (3.5) – – – – –

ADI—D 2.6 (1.7) – – – – –

ADOS‑CSS 4.6 (2.1) – – – – –
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Exploration of RRBI
To explore the diversity of RRBI in all subjects in the 
study, we used the Repetitive Behavior Scale-Revised 
(RBS-R) [35] and the Yale-Brown Obsessive Compulsive 
Scale (Y-BOCS) [23], both considered as gold standard 
questionnaires to explore repetitive/stereotyped behav-
iors and obsessive–compulsive symptoms, respectively. 
The use of these 2 scales simultaneously and whatever 
the clinical profile of individuals we investigated allowed 
the exploration of the wide span of RRBI. For the purpose 
of the study, we used a self-report version of the Y-BOCS 
designed by the Tourette Syndrome Association Genetic 
Consortium (January 1995) [23]. This instrument, based 
on the symptom checklist and ordinal scales of the 
Y-BOCS, was used as parental hetero-questionnaires for 
children and as self-questionnaires for adults. The con-
cordance for expert clinicians’ assessment of obsessive–
compulsive symptom severity was excellent [61].

Brain volume estimations based on magnetic resonance 
imaging
MRI data were collected for a subsample of the subjects 
included in the study (n = 152), gathering 42 individu-
als with ASD, 89 first-degree relatives and 13 subjects 
from the general population (Additional file 1: Table S1). 
Acquisitions were performed using the following param-
eters: spoiled gradient recalled echo (SPGR), 1  mm 
isotropic, repetition time (TR) = 25  ms, echo time 
(TE) = 6  ms, flip angle = 30º. For all participants, MRI 
data were collected using previously described param-
eters, with a 1.5 Tesla scanner using a T1-Weighted 
acquisition [44]. Raw DICOM images were converted 
to NIFTI format with dcm2niix (https:// github. com/ 
rorde nlab/ dcm2n iix) and defaced with MRIdeface [5]. 
Cortical reconstruction and volumetric segmentation 
were performed with FreeSurfer software version 6.0.0 
(http:// surfer. nmr. mgh. harva rd. edu/), and visual control 
of the segmentation quality was done using the QCAPP 
(https:// github. com/ neuro anato my/ QCApp).

Statistical Analysis
The demographic and clinical characteristics of the 
three groups of participants (autistic individuals, their 
first-degree relatives and TD) were compared using 
the Student’s t test and the X2 test for continuous and 
discrete variables, respectively. To investigate the 
dimensions underlying RRBI variability, we performed 
a principal component analysis (PCA). We first stand-
ardized item-related scores from the RBS-R and the 
Y-BOCS. We then ran general linear models adjusted 
for age, sex, and age*sex interactions to generate resid-
uals (Additional file  1: Tables S2 and S3). PCA with 

varimax rotation was then performed on the residual 
standardized RRBI values, including all the partici-
pants enrolled in the study regardless of their status. 
The number of factors was defined after visual explora-
tion of the screen plot. To identify the items belonging 
to a specific factor, we observed which items had high 
loadings (> |0.20|) for a specific factor but low loadings 
(< |0.10|) for the others. PCA was performed using JMP 
Pro 16.0 (SAS Inc., Cary, NC).

To explore the interactions between RRBI-derived 
factors and brain volumes, we ran a similar analysis 
on brain volumes extracted from automatic segmenta-
tion of the gray and white matter structures. Each brain 
volume was standardized. We also used general linear 
models adjusted for age, sex, and age*sex interactions 
to generate structural brain volume residuals. The rela-
tionship between the RRBI-derived factors and stand-
ardized structural brain volume residuals was explored 
using linear regression methods. All tests were two-
tailed. Type I error rate was controlled using the false 
discovery rate (FDR) method. Statistical analysis was 
performed using Python packages (Python Software 
Foundation. Python Language Reference, version 2.7). 
Brain map figures were generated using the ENIGMA 
toolbox [38].

Results
Dimensionality of the RRBI symptoms
To explore the main dimensions underlying the diver-
sity of RRBI reported in subjects enrolled in the 
study, we ran a principal component analysis. After 
visual inspection, we identified 3 main factors which 
accounted for 30.3% of the cumulative variance (Addi-
tional file 1: Table S4). Factor 1 (FA1, 12.7% of the vari-
ance) reflecting the ‘motor-driven’ RRBI or ‘sensory 
motor behaviors / compulsions’, with 43 items belong-
ing to the RBS-R scale except one from the Y-BOCS. 
This item reflected the need to repeat routine activi-
ties—a frequent symptom reported in autistic patients, 
often associated with emotional dysregulation. In con-
trast, Factors 2 and 3 gathered mainly Y-BOCS-related 
items, reflecting the ‘cognitively driven’ RRBI. Factor 2 
encompassed 22 items, all from the Y-BOCS (FA2, 8.8% 
of the variance). FA2 gathered symmetry and ordering 
symptoms that may represent a ‘rigidity/insistence on 
sameness’ dimension. Factor 3 aggregated items asso-
ciated with washing, checking, contamination and 
aggressive obsessive–compulsive symptoms (FA3, 7.9% 
of the variance). The subjects’ scores showed a simi-
lar repartition depending on their conditions (autistic, 
related or TD) among the 3 factors (Additional file  3: 
Fig. S2).

https://github.com/rordenlab/dcm2niix
https://github.com/rordenlab/dcm2niix
http://surfer.nmr.mgh.harvard.edu/
https://github.com/neuroanatomy/QCApp
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Correlates between structural brain volumes 
and RRBI‑related dimensions
We then explored the relationships between the RRBI-
related dimensions and structural brain volume residuals 
using simple linear regressions (Fig. 1, Table 2, Additional 
file  2: Fig. S1). FA1 was associated with increased left 
and right putamen volumes (R2 = 0.06, F = 8.84, regres-
sion coefficient = 0.75, uncorrected p <  10–3, r = 0.24; 
R2 = 0.04, F = 5.48, regression coefficient = 0.58, uncor-
rected p <  10–3, r = 0.20). An interaction between FA1 and 
the left amygdala volume was also observed (R2 = 0.03, 
F = 4.18, regression coefficient = 0.03, uncorrected 
p = 0.04, r = 0.17). Our results were coherent with a recur-
rently reported brain volume increase in the amygdala in 
individuals with autism or anxiety disorders. However, 
the associations we reported did not survive adjustment 
for multiple comparisons (FA1 and left amygdala vol-
ume: corrected p = 0.41; FA1 and left putamen volume: 
corrected p = 0.10, FA1 and right putamen volume: cor-
rected p = 0.30) (Fig. 1A, Table 2).

FA2 was also associated with decreased left and 
right putamen volumes (respectively, R2 = 0.06, 

F = 8.06, regression coefficient =  − 1.12, uncorrected 
p <  10–3, r =  − 0.24; R2 = 0.04, F = 5.31, regression coef-
ficient =  − 0.89, uncorrected p = 0.02, r =  − 0.19) and 
decreased left parietal volume (R2 = 0.001, F = 0.16, 
regression coefficient =  − 0.18, uncorrected p <  10–3, 
r =  − 0.05). Interestingly, decreased volume in the pari-
etal lobe was associated in the literature with impair-
ment in high-order cognitive processes, mainly 
executive dysfunctions. Despite the relevance of our 
findings, their significance did not survive after mul-
tiple comparisons correction (FA2 and left putamen 
volume: corrected p = 0.15; FA2 and right putamen vol-
ume: corrected p = 0.33; FA2 and left parietal volume: 
corrected p = 0.10) (Fig.  1B and Table  2). Similarly, FA3 
was linked to decreased left and right putamen volumes 
(R2 = 0.04, F = 6.20, coefficient =  − 0.92, uncorrected 
p = 0.01,  − 0.21; R2 = 0.32, F = 4.60, coefficient =  − 0.78, 
uncorrected p = 0.03, r =  − 0.18). This association did not 
persist after correction for multiple comparisons (FA3 
and left putamen volume: corrected p = 0.41; FA3 and 
right putamen volume: corrected p = 0.44) (Fig.  1C and 
Table 2).

Fig. 1 Brain map of linear regression‑derived coefficients regarding the relationship between repetitive and restricted behaviors 
and interests‑related factors and neuroanatomic structures. A Representation of the linear regression‑derived coefficient obtained for each 
cortical volume (at left) and subcortical volume (at right) considering Factor 1. Extreme values of the linear regression‑derived coefficients are 
represented in blue (<  − 1) and in red (> + 1). P values < 0.05 before FDR correction were obtained for the left amygdala, left putamen and right 
putamen volumes; B Representation of the linear regression‑derived coefficient obtained for each cortical volume (at left) and subcortical volume 
(at right) considering Factor 2. Extreme values of the linear regression‑derived coefficients are represented in blue (<  − 1) and in red (> + 1). P 
values < 0.05 before FDR correction were obtained for the left parietal, left putamen and right putamen volumes; C Representation of the linear 
regression‑derived coefficient obtained for each cortical volume (at left) and each subcortical volume (at right) considering Factor 3. Extreme values 
of the linear regression‑derived coefficients are represented in blue (<  − 1) and in red (> + 1). P values < 0.05 before FDR correction were obtained 
for the left amygdala, left putamen and right putamen volumes
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Discussion
The challenges in identifying biomarkers in neurodevel-
opmental disorders, particularly in autism, stem from the 
difficulties researchers have in considering the inter-indi-
vidual phenotypic variability. It ranges from those with a 
developmental trajectory in the normal range (although 
carrying environmental and/or genetic vulnerability risk 
factors) to individuals with mild to severe impairment. 
The purpose of our study was, therefore, to account for 
this inter-individual variability by exploring the spectrum 
of RRBI assessed in a large population of individuals 
with autism, their unaffected first-degree relatives, and 

controls from the general population. Interestingly, our 
results underlined the potential implication of the puta-
men in the RRBI: an increase in the volume of the puta-
men was associated with ’low-order’ symptoms (mainly 
stereotyped behaviors) and on the opposite, a decrease in 
the putamen volume with cognitively driven symptoms 
(mainly obsessive–compulsive symptoms).

Dimensionality of the RRBI symptoms
The factor analysis revealed the multidimensionality of 
RRBI by identifying three dimensions: FA1 gathered the 
RBS-R-related items typically observed in autism [13, 

Table 2 Linear regressions between the factors and each cortical, subcortical, cerebellar and callous structures

F value, R-squared, linear regression-derived coefficients (Coef ), standard errors (SE) and p value from the linear regressions were reported; FDR: False Discovery Rate 
was calculated to correct for multiple testing. In bold, non-corrected p value < 0.05

Factor 1 Factor 2 Factor 3

F R2 Coef p FDR F R2 Coef p FDR F R2 Coef p FDR

Cortical structures

Left frontal 0.09 0.001 0.12 0.75 0.91 0.003 0.0001 0.03 0.99 0.99 0.04 0.0001  − 0.10 0.85 0.97

Right frontal 0.23 0.002 0.17 0.63 0.90 0.05 0.0001  − 0.12 0.82 0.99 0.17 0.001  − 0.21 0.68 0.97

Left occipital 0.52 0.004 0.16 0.47 0.90 0.0003 0.0001  − 0.01 0.99 0.99 0.49 0.003  − 0.23 0.49 0.97

Right occipital 0.94 0.007 0.22 0.33 0.90 0.51 0.004 0.26 0.48 0.87 0.03 0.0001  − 0.05 0.87 0.97

Left parietal 0.29 0.002 0.16 0.59 0.90 0.16 0.001  − 0.18 0.001 0.10 0.95 0.007  − 0.43 0.33 0.97

Right parietal 1.37 0.01 0.34 0.24 0.90 0.98 0.007  − 0.45 0.32 0.86 2.66 0.02  − 0.69 0.11 0.44

Left temporal 1.02 0.007 0.28 0.31 0.90 0.08 0.001 0.12 0.78 0.99 0.01 0.0001  − 0.04 0.93 0.97

Right tempora 0.64 0.005 0.21 0.42 0.90 0.06 0.0001  − 0.09 0.83 0.99 0.09 0.001  − 0.12 0.76 0.97

Subcortical structures

Left accumbens 0.25 0.002  − 0.09 0.62 0.90 0.54 0.004 0.21 0.46 0.87 0.23 0.002 0.13 0.64 0.97

Right accumbens 0.32 0.002 0.11 0.57 0.90 0.58 0.004  − 0.22 0.45 0.87 0.63 0.005  − 0.22 0.43 0.97

Left amygdala 4.18 0.030 0.41 0.04 0.41 1.89 0.01  − 0.44 0.17 0.75 0.80 0.006  − 0.27 0.37 0.97

Right amygdala 0.10 0.001  − 0.06 0.76 0.91 0.02 0.0001  − 0.04 0.89 0.75 0.002 0.0001  − 0.01 0.97 0.97

Left caudate 0.38 0.003 0.13 0.54 0.90 3.39 0.02  − 0.61 0.07 0.66 2.94 0.02  − 0.53 0.89 0.97

Right caudate 0.64 0.43 0.16 0.43 0.90 2.25 0.02  − 0.48 0.14 0.75 2.65 0.02  − 0.48 0.11 0.44

Left hippocampus 0.02 0.0001  − 0.03 0.89 0.92 0.08 0.001 0.09 0.78 0.98 0.51 0.004 0.23 0.47 0.97

Right hippocampus 0.35 0.002 0.12 0.55 0.90 1.48 0.01  − 0.39 0.23 0.78 0.07 0.001  − 0.08 0.79 0.97

Left pallidum 0.21 0.002 0.13 0.64 0.90 1.04 0.008  − 0.43 0.31 0.86 0.25 0.002  − 0.19 0.62 0.97

Right pallidum 0.17 0.001  − 0.10 0.68 0.90 0.003 0.0001  − 0.02 0.96 0.99 0.004 0.0001 0.02 0.95 0.97

Left putamen 8.84 0.06 0.75 0.003 0.10 8.06 0.06  − 1.12 0.005 0.15 6.20 0.04  − 0.92 0.01 0.41

Right putamen 5.48 0.04 0.58 0.02 0.30 5.31 0.04  − 0.89 0.02 0.33 4.60 0.32  − 0.78 0.03 0.44

Left thalamus 0.04 0.0001 0.05 0.84 0.92 0.08 0.001  − 0.11 0.78 0.99 0.005 0.0001  − 0.03 0.94 0.97

Right thalamus 0.20 0.001 0.11 0.65 0.90 0.58 0.004  − 0.29 0.45 0.86 0.12 0.001  − 0.12 0.73 0.97

Cerebellum

Left Cerebellum 0.01 0.01 0.27 0.19 0.90 1.38 0.01  − 0.37 0.24 0.78 1.03 0.007  − 0.29 0.31 0.97

Right Cerebellum 1.33 0.01 0.24 0.25 0.90 0.83 0.006  − 0.30 0.36 0.87 0.66 0.005  − 0.24 0.42 0.97

Corpus Callosum

Anterior corpus callosum 1.57 0.001  − 0.004 0.19 0.98 0.01 0.0001 0.02 0.93 0.99 0.13 0.001  − 0.09 0.72 0.97

Mid anterior corpus callosum 0.02 0.001  − 0.02 0.89 0.92 0.04 0.0001 0.05 0.84 0.99 0.09 0.001  − 0.07 0.77 0.97

Central corpus callosum 0.33 0.001 0.56 0.56 0.90 0.30 0.002 0.14 0.59 0.99 0.12 0.001 0.08 0.73 0.97

Midposterior corpus callosum 0.57 0.004 0.14 0.45 0.90 2.39 0.02  − 0.43 0.13 0.75 2.98 0.02  − 0.44 0.08 0.44

Posterior corpus callosum 0.02 0.001 0.03 0.89 0.92 1.81 0.01  − 0.46 0.18 0.75 2.89 0.02  − 0.54 0.09 0.44
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32]; FA2 put together the items related to rigidity/insist-
ence on sameness from the Y-BOCS, symptoms which 
were trait features of the individuals with autism but also 
those with obsessive–compulsive symptoms [65, 68]; and 
FA3 that included only Y-BOCS related items usually 
displayed by individuals with OCD [17]. Interestingly, 
FA2 put together the symmetry and ordering of obses-
sions/compulsions and the need to repeat things. These 
symptoms were described in the literature as settled 
clinical characteristics of autistic children with comorbid 
OCD [55]. Symmetry and ordering symptoms are fre-
quently reported in the developmental subtype of OCD, 
which—beyond its juvenile onset—is characterized by an 
increased proportion of neurodevelopmental comorbidi-
ties, including Tourette’s syndrome, ADHD, and autism, 
but also by significant impairment in executive func-
tions [11, 16, 24]. A few studies have highlighted the link 
between the intensity of symmetry/ordering symptoms 
and poor verbal working memory, visuospatial plan-
ning, inhibitory control, and cognitive flexibility abilities 
[11]. Thus, among the characteristics shared by children 
with autism and OCD, executive dysfunction may play 
a critical role in these disorders [10, 30]. Interestingly, 
unaffected first-degree parents of children with OCD or 
autism also showed executive impairments [17, 47, 59]. 
Overall, FA2 dimension we identified may be a testimony 
of the cumulative impact of executive impairment and 
the presence of RRBI. Finally, the FA3 dimension was 
driven by OCD-related symptoms since gathering the 
washing, checking, contamination, and aggressive symp-
toms [36, 55]. This dimension was probably less related to 
autism but more a proxy of obsessive–compulsive symp-
toms [40, 45].

Correlation between structural brain volumes 
and RRBI‑related dimensions
Our results were in line with publications stressing the 
critical role of the cortico-thalamic-striatal-cortical loop 
in RRBI. Our study revealed a central implication of the 
putamen across the 3 distinct dimensions we reported, as 
well as specific roles of subcortical and cortical structures 
per FA, which may shape the diversity of symptoms, 
agglomerated on the dimensions. The positive associa-
tion of the putamen and the left amygdala with FA1 was 
consistent with the role of the putamen in autonomic 
movements, described in complex motor stereotypies 
[43] and in autism [19, 37, 46, 53]. Including the puta-
men, the basal ganglia play important roles in regulating 
repetitive behaviors (notably in autism) in association 
with the hippocampus, the hypothalamus, but also other 
neuroanatomical structures of the limbic system (includ-
ing the amygdala) [22]. Obviously, amygdala volume 

abnormalities were more usually related to anxiety, and 
more specifically to social anxiety in autism [3, 22, 31].

In contrast to the positive association of the putamen 
volume with FA1, we observed a negative relationship 
with FA2 and FA3. Interestingly, our results replicated 
those of the ENIGMA-OCD consortium, which also 
reported a reduced putamen volume in OCD [62, 63]. 
This reduced putamen volume may relate more to the 
compulsive component than the obsessive one in OCD 
[9]. FA2 was associated in addition to the decreased 
volume of the parietal cortex. Similar parietal abnor-
malities in cortical thickness, volume or surface area, 
may reflect the cortical dysmaturation in this area, fre-
quently reported in children with OCD and autism [6, 
53, 54]. Interestingly, the parietal cortex is involved in 
social interactions, motor learning and repetitive behav-
iors in autism [64] but also participates in cognitive in/
flexibility, which is coherent with the sameness nature of 
RRBI-related symptoms encompassed by FA2 [26]. Bidi-
rectional associations between RRBI and putamen vol-
ume highlighted its pivotal role, implying the presence of 
modulators beyond the putamen. Although FA1, FA2 and 
FA3 were distinct factors, shared neural underpinnings 
might contribute to their clinical similarity.

Limitations
Our study was conducted retrospectively in relation to 
the initial research project using a 1.5 T MRI and Free-
Surfer, which reduced the data acquisition and segmen-
tation precision of the brain structure, especially the 
subcortical ones such as the putamen. Nevertheless, 
we maintained the quality of FreeSurfer segmentations 
through a visual quality check in our study. Furthermore, 
the use of FreeSurfer segmentation facilitated compari-
sons with large cohorts such as ENIGMA, enhancing the 
relevance of our results. The lack of power of the brain 
imaging part of our study did not allow us to explore the 
brain asymmetry structures associated with the dimen-
sions we reported. We, however, observed a trend for a 
leftward asymmetry (based on p value and coefficients 
L > R). A similar leftward brain asymmetry involving the 
putamen was previously reported in autism and OCD [7, 
28, 34, 51, 54]. The role and impact of this brain asymme-
try on the symptomatology of ASD and OCD remained 
unclear but may result from aberrant brain development 
trajectories.

When exploring the dimensions gathering the RRBI 
phenotypic variability, we did not investigate the gender’s 
impact on RRBI due to the limited sample size of females, 
which was a significant limitation [1, 2, 21, 60]. Never-
theless, we conducted sub-analyses exclusively on male 
subjects, maintaining the consistent item composition of 
the three FAs. (Additional file  1: Table  S5). We also did 
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not include the effect of potential covariates, such as the 
whole pattern of comorbidities or the effect of executive 
dysfunctions, as mentioned above. For example, planning 
strategy impairments consistently reported in probands, 
and their first-degree relatives may specifically partici-
pate in FA2 [8]. Based on scales (RBS-R and Y-BOCS), 
respectively, dedicated to repetitive behaviors in autism 
and obsessive–compulsive symptoms, our study was lim-
ited by their own constructions, which impacted on the 
dimensional approach. Future research would explore 
whether similar dimensions emerge when using a single 
integrated scale [48].

Finally, one additional limitation may result from the 
wide range of ages of individuals enrolled in our study. 
This might have biased the volume estimates of the small 
brain structures, specifically subcortical structures such 
as the putamen or the amygdala, since it relied on a lim-
ited number of voxels [27, 42, 57]. This effect may result 
from the opposite coefficient direction of the regres-
sion analysis, we reported between FA1 and the neuro-
anatomical structures (positive regression) and between 
FA2 or FA3 (negative regression) and these. FA1 more 
reflected the autistic-related symptoms and thus was 
mainly based on symptoms displayed by probands with 
autism, younger than relatives and controls enrolled in 
our study. Moreover, our study was based on cross-sec-
tional, not longitudinal, which limited the exploration of 
changes in trajectories reported in autism and OCD [25, 
41, 49].

Conclusion
Our results stressed the pivotal role of the putamen in 
the determinism of RRBI. Variations in the putamen vol-
ume, in association with variations in cortical structures, 
influence the phenomenology of repetitive behaviors in 
individuals with autism, their relatives, and individuals 
from the control population. Exploration of the integra-
tive role of the putamen needs to be strengthened in this 
specific context.
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