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Abstract 

Neuroimaging analyses of brain structure and function in autism have typically been conducted in isolation, missing 
the sensitivity gains of linking data across modalities. Here we focus on the integration of structural and functional 
organisational properties of brain regions. We aim to identify novel brain‑organisation phenotypes of autism. We uti‑
lised multimodal MRI (T1‑, diffusion‑weighted and resting state functional), behavioural and clinical data from the EU 
AIMS Longitudinal European Autism Project (LEAP) from autistic (n = 206) and non‑autistic (n = 196) participants. Of 
these, 97 had data from 2 timepoints resulting in a total scan number of 466. Grey matter density maps, probabilistic 
tractography connectivity matrices and connectopic maps were extracted from respective MRI modalities and were 
then integrated with Linked Independent Component Analysis. Linear mixed‑effects models were used to evaluate 
the relationship between components and group while accounting for covariates and non‑independence of par‑
ticipants with longitudinal data. Additional models were run to investigate associations with dimensional measures 
of behaviour. We identified one component that differed significantly between groups (coefficient = 0.33, padj = 0.02). 
This was driven (99%) by variance of the right fusiform gyrus connectopic map 2. While there were multiple nominal 
(uncorrected p < 0.05) associations with behavioural measures, none were significant following multiple comparison 
correction. Our analysis considered the relative contributions of both structural and functional brain phenotypes 
simultaneously, finding that functional phenotypes drive associations with autism. These findings expanded on previ‑
ous unimodal studies by revealing the topographic organisation of functional connectivity patterns specific to autism 
and warrant further investigation.
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Background
Autism spectrum disorders (autism) are characterised by 
difficulty with communication and social interaction and 
repeated stereotyped behaviours and/or altered sensory 
processing [1]. Neuroimaging studies of autism have fur-
thered our understanding of its neurobiology; however, 
the majority of studies thus far have been limited in their 
ability to identify valid and reliable biomarkers. Classical 
neuroimaging studies have used case–control designs, 
together with a typical focus on small samples and sin-
gle data modalities. This approach potentially obfus-
cates biomarker identification since individual variability 
is masked by focusing only on between group effects, 
thereby ignoring group heterogeneity. Furthermore, sen-
sitivity to associations is lacking due to the fragmented 
analytical approach of single modality analysis.

Recent significant progress in neuroimaging studies has 
been made by addressing and utilising the heterogeneity 
of autism—focusing on dimensional measures of behav-
iour that cut across diagnostic boundaries [2–7]—and by 
using advanced methodologies that account for diverse 
patterns of variance across the brain rather than focal 
deviations [3, 8–13]. Three of these latter studies [3, 8, 9] 
revealed covariation patterns of grey matter density and 
deviations in cortical thickness, associated with autism in 
the same sample considered in the present paper. As well 
as primary univariate findings of association with autism, 
these papers also revealed complex associations between 
all isolated imaging phenotypes and multiple continu-
ous clinical measures as determined in a multivariate 
analysis conducted with canonical correlation analysis 
(CCA). These papers show the potential of data-driven 
approaches to leverage the heterogeneity of autism in 
pursuit of biomarkers.

Moreover, it has been demonstrated that moving from 
separate unimodal MRI analysis to integrated multi-
modal analysis with linked independent component 
analysis (LICA) generates brain phenotypes that strongly 
relate to demographic and behavioural data, far exceed-
ing the potential of any individual unimodal approach 
seen to date [14, 15]. The assumption with multimodal 
approaches is that underlying pathophysiological pro-
cesses are reflected in multiple aspects of neurobiology, 
such that different indices of these biological measures 
can be used to achieve a joint integrated picture of these 
processes. Thus, by integrating information from multi-
ple sources we gain increased sensitivity to detect asso-
ciations with behaviour. Specifically, LICA, an extension 
of traditional ICA, decomposes such multimodal data 
to generate a set of spatial maps, subject-specific and 
modality-specific contributions for each independent 
component (IC). Recently, this method has been suc-
cessfully implemented in attention deficit hyperactivity 

disorder (ADHD) research to identify novel brain pheno-
types associated with ADHD severity [16] and in autism 
research to integrate clinical and event related potential 
(ERP) data, which identified early neuronal processes 
that predicted clinical outcome [17]. There are also a 
small number of autism studies that integrate different 
MRI modalities using LICA. However, one of these uti-
lised LICA for visualisation purposes only [18] while the 
other 2 investigated the LICA subject courses in analy-
sis. Both these studies integrated voxel based morphol-
ogy (VBM) grey matter density maps and diffusion tensor 
imaging (DTI) metrics. Itahashi and colleagues identified 
one component that showed covariations in both grey 
matter and white matter morphology associated with 
autism diagnosis [19] in a relatively small sample (n = 92 
total) of adult males, all with an IQ of > 80. More recently 
a second study from Mei and colleagues [20] analysed a 
larger group with broader spread across IQ, age and sex, 
and identified one multimodal pattern associated with 
autism diagnosis [20]. The grey and white matter covari-
ation patterns differed between these two papers, likely 
due to the differences in the sample demographics.

Previous implementations of MRI-based LICA, men-
tioned above, used traditional unimodal data extraction 
techniques. Here we attempted to improve upon previous 
approaches by incorporating more analytically advanced 
initial processing steps developed in recent years, leading 
to more biologically plausible unimodal representations 
of the brain prior to integration. Using these advanced 
unimodal feature extraction methods may provide more 
accurate characterisation of the fine-grained features of 
the brain. For instance, we know that there is behaviour-
ally relevant functional organisation within brain regions 
and potential multiplicity of these regions [21–25]. Con-
nectopic mapping is able to characterise within region of 
interest (ROI) variations in functional connectivity while 
simultaneously dealing with potential functional multi-
plicity [21–25], substantially improving upon tradition-
ally used network-based functional connectivity metrics. 
We therefore use connectopic mapping to identify func-
tional connectopies (gradients) within our resting-state 
functional MRI (fMRI) data. Additionally, structural 
organisation in the brain can be modelled from diffusion 
MRI (dMRI) data with non-tensor based tractography, 
providing a more biologically plausible representation 
of the white matter than traditional tensor-based meth-
ods which fail to model complex fibre architectures [26]). 
We therefore implement a non-tensor based method 
to better address this complexity. Further, implement-
ing probabilistic tractography from each voxel within an 
ROI allows us to probe the potential spatial organisations 
of structural connectivity. We hypothesised that these 
advanced approaches to unimodal feature extraction 
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coupled with multimodal integration via LICA and 
implemented on a large sample would provide us with 
additional sensitivity to detect brain-behaviour relation-
ships relevant to autism.

Here we test if the implementation of improved mod-
elling of functional and structural connectivity may yield 
a more fine-grained characterisation of neurobiological 
variation in autism, and explore if an integrated multi-
modal approach can identify new, MRI-based autism-
related brain phenotypes. Ultimately, the identification 
of more fine-grained, multimodal autism related pheno-
types could enhance our understanding of how autism is 
represented in the brain across modality boundaries, and 
additionally increase sensitivity to detect associations 
with behavioural measures of autism. This could improve 
the early detection of autism and might lead to novel ave-
nues of intervention down the line.

Methods
Participants
Data from the European Autism Interventions—A Mul-
ticentre Study for Developing New Medications (EU-
AIMS) Longitudinal European Autism Project (LEAP) 
[27] was used. This is a large European multicentre 
study focusing on identifying and validating biomark-
ers for autism. In total, six centres are involved; however, 
due to limited availability of high quality MRI data in all 
modalities, one site was excluded. The 5 remaining sites 
were: Institute of Psychiatry, Psychology and Neurosci-
ence, King’s College London, United Kingdom; Radboud 
University Medical Centre, Nijmegen, the Netherlands; 
Central Institute of Mental Health, Mannheim, Ger-
many; Cambridge University, Cambridge, UK and Uni-
versity Medical Centre Utrecht, the Netherlands. Local 
ethics committees in each participating centre approved 
the study and written informed consent was provided 
by all participants and/or their legal guardians (for 
those < 16/18  years old [country dependent] or legally 
incapacitated). Details of the project have been outlined 
elsewhere [27], but briefly; participants with and without 
autism underwent clinical, cognitive and MRI assessment 
at multiple timepoints.

Only participants with all of the required modalities 
(T1-weighted, resting state-fMRI and diffusion weighted 
imaging [DWI] at any one time point), of sufficient qual-
ity (see Additional file  1 for quality assessment details), 
were included in this study. This resulted in 206 autism 
and 196 neurotypical (NT) participants. 97 of these had 
good quality data of all modalities available at 2 time-
points. See Table  1 and Additional file  1: Table  S2 for 
demographic and clinical information. This sample was 
not sufficient for longitudinal analysis. Data from both 
timepoints is used regardless, as it increases our sample 

size by an additional 97 scans, giving us more statistical 
power.

Clinical assessment
All clinical assessments that were utilised were collected 
at both wave 1 and wave 2. Participants were included in 
the autism group if they had a clinical diagnosis accord-
ing to the DSM-IV or DSM-5 criteria. Within the autism 
group, symptoms in the domains of social affect and 
restricted repetitive behaviours (RRB) were assessed 
with the Autism Diagnostic Observational Schedule 2 
(ADOS-2) [28]. To assess symptoms in adaptive behav-
iour impairment the Vineland adaptive behaviour scale 
(VABS) was used [29]. Specifically, impairments in social-
isation, communication, daily living skills and motor skills 
were determined with the VABS scale. In both autistic 
and non-autistic participants we further assessed autis-
tic symptoms and repetitive and rigid behaviours with 
the Social Responsiveness Scale 2nd Edition (SRS) [30] 
and the Repetitive Behaviour Scale-Revised (RBS) [31], 
respectively. Finally, sensory processing was assessed 
with the Short Sensory Profile (SSP) [32]. Given the high 
rate of comorbidity of ADHD in autism we assessed 
ADHD symptoms with the DSM-5 rating scale (parent 
report or self-report when parent report was unavaila-
ble). Full scale IQ (fsIQ) was estimated from 4 subtests of 
the Wechsler Abbreviated Scales of Intelligence (WASI) 
or Wechsler Adult Intelligence Scale (WAIS)/Wechsler 
Intelligence Scale for Children (WISC) as appropriate 
and available in local languages during participants’ first 
visit (LEAP wave 1).

MRI data acquisition
All participants were scanned on 3T MRI scanners at 
both time points. T1-, functional and diffusion- weighted 
MRI data were acquired across five sites using largely 

Table 1 Demographics of individuals at first or only time point

Autism Control Test statistic p value

N 206 196

Sex m:f 147:59 124:72 χ2 = 2.6 0.1

Age mean (SD), years 17.8 (5.2) 17.3 (5.2) χ2 = 393 0.5

IQ mean (SD) 101 (20) 105 (18) χ2 = 188 0.05

Timepoint t1:t2 166:40 149:47 χ2 = 1 0.3

Site
Cambridge 14 14 χ2 = 9 0.06

KCL 74 67 χ2 = 9 0.06

Mannheim 24 36 χ2 = 9 0.06

Nijmegen 81 57 χ2 = 9 0.06

Utrecht 13 22 χ2 = 9 0.06



Page 4 of 13Oblong et al. Molecular Autism           (2023) 14:32 

the same scanner parameters. The details on the indi-
vidual scanning parameters and quality control and pre-
processing procedures are described in the Additional 
file 1 (Sects. 2–5). See Additional file 1: Table S3 for scan 
parameters.

Unimodal feature extraction
The unimodal features we use for multimodal integra-
tion with LICA are derived from advanced MRI data 
processing pipelines, further described in the sections 
below. Briefly, we derive whole-brain grey matter density 
maps from T1-weighted images, connectopic maps from 
rs-fMRI scans and white matter connectivity measures 

from probabilistic tractography. See Fig.  1 for an over-
view of the unimodal feature extraction and multimodal 
integration.

T1‑weighted data
T1-weighted MRI data were processed with the Voxel 
Based Morphometry (VBM) pipeline in the compu-
tational anatomy toolbox (CAT12: http:// www. neuro. 
uni- jena. de/ cat/) in statistical parametric mapping soft-
ware (SPM12: Wellcome Department of Imaging Neu-
roscience, London, UK). T1-weighted images were 
automatically segmented into grey matter, white matter 
and cerebrospinal fluid and affine registered to the MNI 

Fig. 1 Overview of methods. This figure shows a conceptual overview of the analysis pipeline. The upper portion shows the unimodal feature 
extraction prior to integration. The bottom part shows the outputs of multimodal integration using LICA. DWI—diffusion weighted imaging, T1—
T1‑weighted magnetic resonance imaging, fMRI—functional magnetic resonance imaging, PCA—principal component analysis, IC—independent 
component, ICA—independent component analysis, VBM—voxel based morphometry

http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
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template. Resulting segmented grey matter maps were 
then used to generate a study-specific template (exclud-
ing longitudinal data) and registered to MNI space via 
a high-dimensional, nonlinear diffeomorphic registra-
tion algorithm (DARTEL) [33]. All data were then pro-
cessed using this template. A Jacobian modulation step 
was included using the flow fields to preserve voxel-
wise information on local tissue volume. Images were 
smoothed with a 4  mm full-width half-max (FWHM) 
isotropic Gaussian kernel and downsampled (for compu-
tational reasons) to 2 mm isotropic voxel dimension.

ROI selection for DWI and RS analysis
Due to computational restrictions, analysis had to be 
limited to select ROIs. We chose to focus on regions that 
have previously been implicated in autism such as the 
amygdala, striatum, post central gyrus, fusiform gyrus 
and anterior cingulate cortex [34, 35]. Subcortical ROIs 
were isolated from the Harvard–Oxford atlas while cor-
tical ROIs were isolated from the Desikan-Kiliany atlas 
[36]. The striatum ROI was formed by combining the 
Nucleus Accumbens, Putamen and Caudate structures 
per hemisphere as per previous connectopic mapping 
studies [22].

Diffusion weighted imaging (DWI)
DWI data were extensively preprocessed to correct for 
imaging and movement artefacts, see Additional file 1 for 
details. Data were then processed with Bayesian Estima-
tion of Diffusion Parameters Obtained using Sampling 
Techniques (BEDPOSTX) and probabilistic tractogra-
phy (ProbtrackX) [37]. ProbtrackX was performed with 
seeding from select ROIs and a list of target atlas ROIs 
to generate a voxel by target ROI connectivity matrix for 
each seed ROI. The target list was composed of cortical 
regions from the multi-modal parcellation developed 
on the Human Connectome Project (HCP) data [38] 
and subcortical ROIs from the Harvard–Oxford atlas. A 
MNI 2 × 2 × 2  mm3 template was used for atlas regions 
to ensure spatial correspondence across subjects. Prin-
cipal component analysis (PCA) was used to reduce the 
dimensionality of these data. Matrix rank-1 PCs were 
kept for analysis in LICA. Participant-by-PC matrices 
for the different cortical or subcortical seed ROIs were 
stacked to produce one cortical and one subcortical input 
for LICA.

Resting state functional MRI (rs‑fMRI)
Rs-fMRI data were preprocessed to account for move-
ment and scanning artefacts as previously described [39] 
and outlined in the Additional file  1. On the preproc-
essed data we performed connectopic mapping to gener-
ate 3 connectopic maps of each ROI determined by their 

functional connectivity to the rest of the cortex [21]. Ref-
erence gradients were produced by averaging gradients 
from 20 subjects from the Human Connectome Project 
[40]. All subject gradients were then checked against 
these to ensure consistent ordering and direction (i.e. 
not flipped). Gradients 1 and 2 were selected for further 
analysis. Gradient 1 for each cortical or subcortical ROI 
was combined into single spatial maps, while gradient 2 
was similarly combined into others, thereby producing 4 
inputs for LICA; cortical G1, cortical G2, subcortical G1 
and subcortical G2.

Multimodal integration
LICA is an extension to ICA that allows for the integra-
tion of multi-modal data linked through a shared mixing 
matrix [41]. For each independent component (IC) iso-
lated the algorithm provides a set of spatial maps (one 
per original modality), a vector describing the contribu-
tion of each subject and finally a vector of the loading 
weights showing the contribution of each modality to 
that component. We use the vector containing the sub-
ject loadings per (multimodal) IC to investigate the rela-
tionship between the (multimodal) brain phenotypes and 
demographic/behavioural measures. Given our sample 
size, we generated 80 components for this analysis. We 
additionally calculated a multimodal index (MMI) per IC 
as previously described [16], indicating if a component 
was driven exclusively by one or multiple of the original 
data modalities.

Statistical analysis
Statistical analyses and graph generation were all per-
formed in R (V3.5.1, [42]). Building on previous work 
that found group differences in structural brain phe-
notypes between autistic and non-autistic participants 
in the same cohort [3, 20] we first used linear mixed 
effects models to test the association between our imag-
ing derived brain phenotypes and autism diagnosis while 
accounting for age, sex, scan site and time point of collec-
tion. Non-independence of some participants (longitudi-
nal data) were accounted for with subject ID as a random 
factor. Analyses of diagnosis were False-Discovery Rate 
(FDR) corrected for the number of IC’s tested [43].

Similar models were then utilised to investigate con-
tinuous associations with ADOS total and its subscales 
and VABS scales within the autism group, and the SSP, 
RRB, SRS questionnaire data across the full sample. FDR 
[43] multiple comparison correction was used in these 
analyses.

Significant associations were further probed to see if 
they were robust to the inclusion of fsIQ in the model. 
Additionally, we tested the associations for interaction 
effects with site, sex, age and time point.
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Additional analysis
Data integration and statistical analyses were repeated 
in structural or functional only subsets of features to 
determine if combined or separate analysis yielded more 
promise.

As a post-hoc analysis we applied trend surface mod-
elling (TSM) to the connectopic gradient of our main 
finding. Essentially, TSM breaks down a surface into 
fewer trend coefficients that reflect the general trends of 
the surface, here, of the connectopic gradient per sub-
ject [22, 44]. We applied model order (MO) of 3 to avoid 
overfitting. This yielded 9 coefficients which we tested 
for association with autism diagnosis using linear mixed 
effects models identical to those described above. Then, 
we applied Bonferroni correction as multiple comparison 
correction (MCC), adjusting for the number of coeffi-
cients analysed.

Results
Participants
The final cohort of participants consisted of N = 206 
autistic and N = 196 non-autistic individuals. The groups 
did not differ significantly in terms of sex distribution, 
age or fsIQ across sites or collection wave (all p val-
ues > 0.05, Table 1). Longitudinal data was only available 
for 2 of the 5 sites (Nijmegen and Mannheim; Additional 
file  1: Table  S2). The longitudinal cohort consisted of 
N = 51 autistic participants and N = 46 non-autistic par-
ticipants. Similar to the cross-sectional cohort there were 
no significant differences between the groups in terms of 
sex, age, fsIQ or diagnostic distribution across sites (all p 
values > 0.09, Additional file 1: Table S2). Given the small 
amount of longitudinal data available in comparison with 
the whole sample and the short duration between time-
points we choose to analyse the whole sample together 
focussing on main effects of diagnosis and behaviour 
rather than longitudinal effects.

Group associations
Our analysis yielded one significant association after 
MCC, between IC62 and autism diagnosis, where the 
contribution from the autistic group was lower than 
the non-autistic group (coefficient = 0.33, padj = 0.02; 
Fig. 2). This effect was robust to the addition of full-scale 
IQ (fsIQ) and no significant interactions were found 
between diagnosis and sex, age, site, timepoint or fsIQ 
(p values > 0.1; data plotted per site is shown in Addi-
tional file 1: Figure S3). Furthermore, as this component 
was almost solely driven by the functional data we tested 
for confounding effects of in-scanner motion, indexed as 
average framewise displacement (FD) during the resting 
state scan. We found our diagnosis effect was robust to 

its inclusion in the model (coefficient = 0.33, padj = 0.02) 
and there was no significant effect of FD on the subject 
course (χ2 = 0.19, p = 0.66).

The cortical connectopic gradient 2 feature contributed 
mostly to this component (99%), localised in the fusiform 
gyrus of the right hemisphere (Fig.  3). The component 
additionally had a VBM contribution of 1% (Fig. 3), while 
the other modalities contributed close to 0%.

To determine if we could detect group specific connec-
topic gradients we went on to visualise the average gra-
dient for each group. We found that the group average 
gradient maps display the same general pattern in their 
connectopic maps. There is a medial–lateral primary 
axis to the gradient with the medial aspect extending 
to the posterior and anterior extremities of the struc-
ture. Notably, however, these group average gradient 
maps subtly visually differ (Fig. 4A, B). To highlight dif-
ferences in the connectivity patterns, we calculated the 
difference map between the gradients by subtracting the 
non-autistic group average map from the autistic group 
average map (Fig.  4C). We see a slight shift, on aver-
age, in the spatial organisation of functional processing 
between groups. We further tested this by extracting 
TSM-coefficients of the right hemisphere fusiform gyrus 
for each subject, thereby reducing the dimensional-
ity of the complex connectopic gradient to nine coeffi-
cients that reflect the general connectopic trend across 
the ROI. Using linear mixed effects models. We found 
three out of nine coefficients were significantly associ-
ated with diagnosis after correcting for multiple testing 
(TSM-coefficient 1: coefficient = − 0.11, padj = 0.008; TSM-
coefficient 6: coefficient = 0.07, padj = 0.0004; TSM-coeffi-
cient 7: coefficient = 0.03, padj = 0.001; Fig. 4D). The other 
6 TSM-coefficients were not significantly associated with 

Fig. 2 IC62 subject course per group. The violin plots show 
the distribution of the subject courses while the boxplots indicate 
the first and third quartile with the median denoted with a thick 
horizontal line. There was a significant main effect of diagnostic 
group. The FDR‑adjusted p value is shown in the top left corner. There 
was no significant effect of site or diagnosis‑by‑site interaction
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diagnosis (padj-values > 0.05). To determine the repro-
ducibility of these associations we conducted a split-half 
analysis outlined in the Additional file 1. The outcome of 
this analysis showed that the same coefficients are associ-
ated with diagnosis in random halves of the same data.

Behavioural associations
The present work found only nominal (uncorrected 
p < 0.05) associations between imaging derived pheno-
types and dimensional clinical measures (ADOS, SRS, 
SSP, RBS, VABS), meaning that the associations are ini-
tially significant but do not survive MCC using FDR. See 
Additional file 1 for more information on these nominal 
results.

Additional analyses
Structural only analysis revealed one multimodal com-
ponent, IC42, that nominally related to group and many 
nominal behavioural associations. Functional only analy-
sis also revealed multiple nominal associations, IC20 and 
IC55, with both group and behavioural measures. Details 
are presented in the Additional file 1. IC55 in particular 
showed very strong correlations with our main finding 
of IC62, in both the subject contributions (rho = 0.63, 

pperm < 0.001) and the spatial maps (cortical gradient 2 
r = 0.96).

Discussion
In the present paper we aimed to improve upon previous 
approaches that investigated the complex neurobiology 
of autism. We implemented advanced unimodal feature 
extraction pipelines to focus on brain structural and 
functional organisation with the hope of producing imag-
ing derived phenotypes that are more sensitive to the 
microstructural properties of the brain prior to multi-
modal integration. The increased sensitivity to subtle var-
iations within ROIs allowed us to decompose across more 
fine-grained representations of unimodal brain features. 
We identified one component, IC62, as significantly asso-
ciated with autism diagnosis after accounting for mul-
tiple testing. This component was mainly driven by the 
functional connectopic gradient 2, specifically localised 
to the right fusiform gyrus. This result was found to be 
robust to confounding effects of acquisition site and fsIQ. 
There were also multiple nominal associations of other 
ICs with diagnosis and/or behavioural measures relevant 
to autism but these did not survive MCC.

Fig. 3 Spatial maps of IC62. Modality contributions of IC62 are shown. Modalities contributing < 1% are excluded from visualizstion. The scale 
represents the Z‑score of spatial contribution within each feature. The red lines on the sagittal slice indicate the position of the axial slices displayed. 
VBM—voxel based morphology, fMRI G2—function MRI gradient 2. |Z|> 2 is shown

(See figure on next page.)
Fig. 4 Group average connectopic maps of the right fusiform gradient 2 and TSM coefficients per group. A Shows the average gradient 
of the autistic group. B Shows the average gradient of the non‑autistic group. The colour scale represents the similarity of functional connectivity 
between voxels and the rest of the brain, with similar colours representing a similar connectivity pattern. C Is the group difference map. Red 
indicates where the autistic group had higher connectivity gradient values compared to the non‑autistic group. Blue indicates the opposite—
where the autistic group had lower connectivity gradient values compared to the non‑autistic group. D Shows the values of TSM‑Coefficients 
as boxplots showing the first and third quartile with the median denoted with a thick horizontal line. The plots are split by group. Coefficients 
that are significantly different between groups post‑MCC are denoted with asterisks. **padj ≤ 0.01, ***padj ≤ 0.001
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Fig. 4 (See legend on previous page.)
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Our primary result identified one component, IC62, 
which is mainly driven by cortical gradient 2 in the fusi-
form gyrus and significantly associated with autism 
diagnosis. The localisation of this finding is in accord-
ance with previous unimodal literature which identified 
decreased activation of the fusiform gyrus when autistic 
participants view faces [45, 46]. The fusiform gyrus has 
been shown to be highly involved in higher-order visual 
processing, specifically the perception of faces, object 
recognition and reading comprehension [47]. Face per-
ception has furthermore been shown to be highly lat-
eralized, with the right fusiform gyrus playing a larger 
role in distinguishing between face versus non-face [48]. 
Altered responses to emotions in facial expressions are 
among the key behavioural phenotypes associated with 
autism [1]). Based on structural connectivity patterns of 
the fusiform gyrus it was previously found that the fusi-
form gyrus can be clustered into 3 subregions (medial, 
lateral and anterior), with each subregion associated with 
a distinct functional connectivity pattern [49]. Due to the 
advanced unimodal feature extraction methods applied 
in this work our results are more sensitive to functional 
connectivity changes within the fusiform gyrus. Here our 
first gradient displayed a main axis in the anterior–poste-
rior direction. While our second gradient, the one signifi-
cantly associated here with autism diagnosis, displayed 
a medial–lateral organisation with the medial pattern 
extending anterior and posterior to the peripheral extents 
of the fusiform. Analysis of extracted TSM-coefficients 
from the right fusiform second gradient confirmed the 
association of topographically organised functional con-
nectivity patterns with autism diagnosis. This expands on 
the results of previous unimodal studies by identifying 
a topographical organisation of functional connectivity 
within the fusiform gyrus associated with autism.

Across all associations found (including nominal), we 
see little shared variance between functional and struc-
tural modalities. Moreover, the majority of findings were 
driven by unimodal functional variation rather than 
structural. This implies that our functional data process-
ing using connectopic mapping may be fruitful in provid-
ing insights into the neurobiology of autism, behaviours 
relevant to autism, and neurodevelopmental conditions 
more generally. While the integration of functional and 
structural data presented here did not provide specific 
insights into how function and structure together vary 
with behaviour, it notably allows us to simultaneously 
characterise phenotypes across structure and function, 
thereby directly testing their relative contributions. Thus, 
this approach meaningfully contributes to the ongo-
ing structure–function debate. Llera and colleagues 
[15] found their structural measures captured the vari-
ance associated with multiple behavioural traits and the 

addition of functional connectivity data to the analysis 
contributed little in terms of variance explained. This is 
in contrast to our current findings which show that the 
functional data dominate components throughout the 
decomposition and provide the majority of behavioural 
associations. This contrast likely stems from the differ-
ent methods of unimodal feature extraction used. Here 
we used connectopic mapping in contrast to functional 
network based connectivity measures previously uti-
lised. These findings imply that inter-individual variance 
of network based connectivity measures can mostly be 
captured by variance in structure alone while connec-
topic maps show inter-individual variability independent 
of structure. While some of the extracted unimodal con-
nectopic map based components may be noise related, 
the prominence of connectopic mapping in the ICs that 
are associated with autism and/or behaviours found here 
indicates there is potentially behavioural relevance cap-
tured. However, many of these findings were nominal and 
therefore require further investigation and validation.

Structural only analysis (see Additional file 1) revealed 
one component, IC42, that was nominally associated 
with the autism diagnosis. This component showed co-
varying white matter organisation and grey matter den-
sity patterns (i.e. was multimodal). The component also 
relates to components reported previously, on partially 
overlapping samples, that investigated grey matter co-
variation patterns in autism [3] and co-varying grey and 
white matter co-variation patterns [20]. However, our 
finding was not significant after multiple comparison 
correction, nor was it stable across sites (see Additional 
file 1 for details).

Functional only analysis (see Additional file 1) revealed 
two components, IC20 and IC55, that were significantly 
associated with autism diagnosis. The high correspond-
ence between the subject course and the spatial map of 
IC55 to our main finding implies that we capture largely 
the same variance in the combined LICA and the func-
tional data only LICA.

Limitations
Our proxies of organisation for functional and structural 
data are based on different methodologies. Connectopic 
mapping is a nonlinear method which generates multi-
ple functional topographic maps based on the connec-
tivity of a region to the rest of the brain. We use a linear 
decomposition (PCA) on our probabilistic tractography 
data to address the sparsity of connectivity data before 
integration with LICA. Connectopic mapping of the trac-
tography data [50] would also have been possible but is 
computationally resource heavy and selecting the num-
ber of gradients to retain would have been arbitrary given 
the scarcity of studies utilising this method to date. By 
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using PCA we retained more of the variance of the data 
while still reducing the dimensionality. However, inves-
tigation of both structurally and functionally derived 
connectopic maps together is warranted. Second, for 
computational reasons we limited our analysis to select 
ROIs. These ROIs were selected based on their previous 
implication in autism. However, a brain-wide approach 
may have uncovered more associations and are encour-
aged in the future work. Finally, our need for all 3 imag-
ing modalities of good quality to be available for each 
individual for inclusion in our sample reduced our sam-
ple size compared to the LEAP sample as a whole. The 
longitudinal aspect of the study suffered most from this 
constraint with only 97 participants having a full set of 
data available at each time point. Additionally, the time 
between wave 1 and 2 was only an average of 1.5 years in 
our sample. Given the relatively small longitudinal sample 
and short time frame for changes to develop, we chose 
to focus on the main effects of diagnosis and behav-
ioural associations in the current study. The 3rd wave of 
data collection in LEAP is currently ongoing which has a 
longer interim period of approximately 8 years. This will 
provide future researchers the opportunity to delve with 
greater power into longitudinal trajectories in autism. 
Our sample size was additionally diminished for certain 
analyses due to missing clinical data. Most notably the 
VABS was not available from one site.

Previously it was shown that LICA reproducibility of the 
first ICs is high, with decreasing reproducibility for subse-
quent ICs (Llera et al. 2019). Furthermore, reproducibility 
quickly decreases as the number of participants reduces. 
Given that our main result is IC62, we expect the repro-
ducibility of this pattern to be low. However, increasing 
sample sizes may improve reproducibility. Importantly 
this exploratory analysis directed our attention to the fusi-
form cortical gradient 2 where we have verified our find-
ing with TSM analysis. Moreover this TSM analysis was 
reproducible in a split-half analysis (see Additional file 1: 
subsection 6.1.1). Out of 80 components, only one yielded 
a significant association with diagnosis when integrating 
across all modalities. This, combined with the moderate 
effect size, suggests that group differences are small in the 
joint measure and do not differ in most brain areas. These 
findings warrant multimodal integration across larger 
cohorts to detect more fine-grained differences between 
the autistic and non-autistic groups.

Conclusion
Here, we successfully utilised multimodal data integra-
tion methods to derive a novel autism-related brain 
phenotype that revealed group differences in the func-
tional organisation of the right fusiform gyrus. Advanced 
techniques in unimodal feature extraction enhanced the 

sensitivity to detect within-ROI functional and structural 
connectivity changes. Our analysis considered the rela-
tive contributions of both structural and functional brain 
phenotypes simultaneously, uncovering that functional 
phenotypes seem to drive associations with autism diag-
nosis and related behavioural measures. Furthermore, 
these findings expand on previous unimodal approaches 
implicating the fusiform gyrus in autism by identifying 
a functional organisation of the fusiform gyrus which 
relates to autism diagnosis and warrants further inves-
tigation. When investigating structural modalities alone 
we identify a component nominally related to autism 
diagnosis in line with previous studies [3, 20]. This sec-
ondary finding exemplifies the potential of LICA to 
decompose many structural data domains into ICs that 
capture significant cross modality covariation.
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