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Abstract 

Background Autism spectrum disorder (ASD) is a heritable condition related to brain development that affects 
a person’s perception and socialization with others. Here, we examined variability in the brain morphology in ASD 
children and adolescent individuals at the level of brain cortical structural profiles and the level of each brain regional 
measure.

Methods We selected brain structural MRI data in 600 ASDs and 729 normal controls (NCs) from Autism Brain 
Imaging Data Exchange (ABIDE). The personalized estimate of similarity between gray matter volume (GMV) profiles 
of an individual to that of others in the same group was assessed by using the person-based similarity index (PBSI). 
Regional contributions to PBSI score were utilized for brain age gap estimation (BrainAGE) prediction model establish-
ment, including support vector regression (SVR), relevance vector regression (RVR), and Gaussian process regression 
(GPR). The association between BrainAGE prediction in ASD and clinical performance was investigated. We further 
explored the related inter‐regional profiles of gene expression from the Allen Human Brain Atlas with variability differ-
ences in the brain morphology between groups.

Results The PBSI score of GMV was negatively related to age regardless of the sample group, and the PBSI score 
was significantly lower in ASDs than in NCs. The regional contributions to the PBSI score of 126 brain regions in ASDs 
showed significant differences compared to NCs. RVR model achieved the best performance for predicting brain 
age. Higher inter-individual brain morphology variability was related to increased brain age, specific to communica-
tion symptoms. A total of 430 genes belonging to various pathways were identified as associated with brain cortical 
morphometric variation. The pathways, including short-term memory, regulation of system process, and regulation 
of nervous system process, were dominated mainly by gene sets for manno midbrain neurotypes.

Limitations There is a sample mismatch between the gene expression data and brain imaging data from ABIDE. 
A larger sample size can contribute to the model training of BrainAGE and the validation of the results.
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Conclusions ASD has personalized heterogeneity brain morphology. The brain age gap estimation and transcrip-
tion-neuroimaging associations derived from this trait are replenished in an additional direction to boost the under-
standing of the ASD brain.

Keywords Autism spectrum disorder, Person-based similarity index, Gray matter volume, Brain age, Gene expression, 
Cognition

Background
Autism spectrum disorder (ASD) is a neurodevelopmen-
tal condition characterized by diminished social inter-
actions, impaired communication, and repetitive and/
or restrictive behaviors [1]. Most previous neuroimag-
ing studies have reported several morphometrical brain 
alterations in ASD, such as subcortical brain abnormali-
ties of striatal structures and amygdala, as well as more 
specific cortical effects in the frontal and temporal lobes 
[2–5]. However, the findings represent group compari-
sons that may not apply to individual patients. The cur-
rent emphasis on precision psychiatry has shifted the 
focus of analysis from groups to single individuals [6, 7]. 
Brain morphometry shows marked inter-individual vari-
ation in the general population that reflects the specific 
genetic and environmental background of each person. 
The ASD has been considered as a whole group in the 
analysis. And yet, individuals in the ASD group are char-
acterized by high phenotypic heterogeneity.

The person-based similarity index (PBSI) is used to 
capture the brain structural profile similarity between 
each participant and that of other group members 
by using MRI data, which can quantify variations of 
brain structures at an individual’s level. Previous stud-
ies assessing the brain structural heterogeneity in ASD 
have focused more on classifying ASD subtypes with 
distinct neuroanatomical differential patterns based on 
machine learning methods [8–10]. In this study, PBSI 
was employed to evaluate the discretization of brain 
morphometric changes in each individual, and further 
capture the overall pattern of neuroanatomical heteroge-
neity, that may produce by the disease mechanism. The 
PBSI has been previously demonstrated as a biologically 
and functionally meaningful brain measure, and has been 
used to quantify brain structural heterogeneity and its 
association with cognitive dysfunction in neuropsychiat-
ric patients [11–15] with high translational potential and 
stability [16, 17]. In addition, PBSI is a heritable index 
and is robust to variation in neuroimaging parameters, 
sample composition, and regional contribution [17]. 
Thus, PBSI was used in our study to examine the brain 
structural heterogeneity in ASD, and its correlations with 
cognitive measures and neurobiology relevance.

Brain development is a complex process that occurs 
throughout childhood, adolescence, and early adulthood 

[18], and identifying typical and atypical brain devel-
opmental trajectories is critical for the assessment and 
intervention of mental disorders such as ASD [19]. MRI 
indices are used to develop biomarkers and establish 
the trajectories of brain development [20, 21]; of these, 
brain age gap estimation (BrainAGE) is promising and 
has been reported in diseased populations [22–24]. For 
ASD, the positive BrainAGE values indicate advanced 
structural brain maturation, whereas negative values 
indicate delayed structural brain maturation. In addi-
tion, BrainAGE was associated with ASD severity in 
communication and social interaction abilities [23]. 
Inter-individual variation in brain morphometry is very 
important for cognitive neuroscience. The PBSI score has 
been reported to correlate significantly with age, sex, and 
cognition assessment [11, 13], and it remains an open 
question whether the PBSI score can be combined with 
BrainAGE calculation and potentially provide more effi-
cient brain information.

Gene hunting is on the path to precision medicine 
for ASD [25], and brain morphology has been reported 
to be highly heritable [26]. However, the neurobiologi-
cal changes underlying these brain structural differences 
are not well understood. In order to gain further insights 
into the similarity between the brain structural profiles, 
we employ a virtual histological approach. The Allen 
Human Brain Atlas (AHBA) provided brain gene expres-
sion data, and spatial correlations between expression 
and brain structural profiles can be performed to evalu-
ate the transcription-neuroimaging associations [27, 28]. 
This approach has been reported to characterize the neu-
robiology of group differences in cortical thickness and 
volume in ASD [29, 30].

In this study, the PBSI score was calculated using the 
gray matter volume (GMV) data of 600 ASDs and 729 
normal controls (NCs) from Autism Brain Imaging Data 
Exchange (ABIDE) data, and regional contributions to 
PBSI score were obtained. We initiated two independ-
ent yet synergistic studies to examine variability in brain 
morphology in ASD children and adolescents. First, 
through the PBSI platform, we test whether the variabil-
ity in brain structural profiles and regional brain meas-
ures for ASD is different from that for NCs, and explore 
whether the regional brain measures can be useful to 
establish a brain age model for ASD-related behavioral 
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dysfunction. Second, the neurobiology of these neuro-
imaging phenotypes is further investigated by transcrip-
tion-neuroimaging associations. A systematic flow of the 
study design is shown in Fig. 1.

Methods
ABIDE‑I and ABIDE‑II participants
The subjects were selected from the ABIDE, and all anal-
yses were in keeping with the standards of Institutional 
Review Board guidelines [31, 32]. The inclusion crite-
ria for the subject age in this study were no more than 
20 years old.

Across ABIDE I and ABIDE II, the structural MRI data 
were used for neuroimaging analysis, detailed informa-
tion about the centers and scan procedure and param-
eters can be found at http:// fcon_ 1000. proje cts. nitrc. 
org/ indi/ abide/. Quality control measures were included: 

(1) the MRI images with artifacts were excluded, such 
as motion artifacts and ghost artifacts; (2) the subjects 
with poor segmentation were excluded; (3) the subjects 
without full intelligence quotient (FIQ) evaluation were 
excluded. Finally, 600 ASDs and 729 NCs were recruited 
for the analyses (ASDs, age: 12.70 ± 3.65, range from 5 to 
20  years old, FIQ: 105.64 ± 17.12; NCs, age: 12.20 ± 3.18, 
range from 6 to 20  years old, FIQ: 112.95 ± 12.70), 
detailed demographic information for ASDs and NCs is 
shown in Tables S1–S2 (Additional file 1). The enrollment 
of subjects and quality control procedures of structural 
MRI data were shown in Figure S1 (Additional file 1).

Structural MRI data preprocessing and GMV measures
The structural MRI data were segmented into white 
matter, gray matter, and cerebrospinal fluid and thus 
GMV maps were obtained, according to the standard 

Fig. 1 The flowchart of the study design. A total of 600 ASDs and 729 NCs from Autism Brain Imaging Data Exchange (ABIDE) were included 
in the study, and the gray matter volume (GMV) was calculated based on the voxel-based morphometry (VBM) analysis. Then, the person-based 
similarity index (PBSI) scores for GMV were calculated in each subject. Based on the regional contributions to PBSI scores, BrainAGE models were 
constructed using different machine learning methods, and the correlations between the difference of regional contributions to PBSI scores 
and gene expression were explored. Abbreviation ABIDE: Autism Brain Imaging Data Exchange; ASD, Autism spectrum disorder; GPR, Gaussian 
process regression; MRI, magnetic resonance imaging; NC, normal control; PBSI, person-based similarity index; RVR, relevance vector regression; SVR, 
support vector regression; VBM, voxel-based morphometry

http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/abide/
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voxel-based morphometry (VBM) pipeline of Statistical 
Parametric Mapping 12 (SPM12, https:// www. fil. ion. ucl. 
ac. uk/ spm/). The template was custom-designed to meet 
data analysis for children and adolescents with ASD and 
age-matched NC. The segmented images were further 
normalized using the Diffeomorphic Anatomical Regis-
tration Through Exponentiated Lie Algebra (DARTEL) 
technique [33]. At last, the normalized images were resa-
mpled into 1.5 × 1.5 × 1.5  mm3 and smoothed by a Gauss-
ian kernel of 8 mm full width half maximum (FWHM).

Computation of the PBSI scores
In order to quantify the within-diagnosis similarity of 
neuroimaging profiles [11, 12], the PBSI scores for GMV 
were calculated separately in ASD and NC following the 
steps below. Firstly, the cortical volume profile of each 
subject was extracted through a parcellation mask (180 
areas for each hemisphere) of the cerebral cortex [34]. 
Secondly, in consideration of ABIDE being a multi-site 
data, Combat harmonization was used to remove the 
center bias [35], with age, sex, and total intracranial vol-
ume as covariates. After that, we calculated the inter-
individual Spearman correlation coefficient according to 
the volume profile of each subject. Consequently, the cor-
relation coefficients were averaged to generate the PBSI 
score for the volume of each brain area for each subject 
(Figure S2, Additional file  1). High values of PBSI score 
indicate that the imaging profile of any one group mem-
ber accurately predicts the profiles of all other members, 
whereas low values signify low consistency among the 
imaging profiles of the group members.

Contribution of regional brain measures to the PBSI
The regional contributions to the PBSI score were calcu-
lated through the leave-one-out strategy. The PBSI score 
of each subject was recalculated by leaving out one brain 
area measure at a time. The regional contribution for 
brain area i was finally defined as the absolute difference 
between the original PBSI score and the recalculated 
PBSI score with the removal of i from the calculation. 
Group difference comparison was performed in each 
brain area to explore the difference in regional contribu-
tions to PBSI score between ASDs and NCs. Age and sex 
were regarded as covariates and Bonferroni’s method was 
used to correct (P < 0.05/360).

Construction of the brain age model and validation
Three conventional machine learning methods were 
used in NCs, including support vector regression (SVR), 
relevance  vector regression (RVR), and Gaussian pro-
cess regression (GPR). SVR model by mapping the data 
to a high dimension finds a flat hyperplane that mini-
mizes the deviation of the training data and calculates 

the regular hyperparameter C to reduce overfitting [36]. 
The grid search method was used for hyperparameter 
search for C over the search space  2–7,  2–5,  2–3,  2–1, 1, 2, 
 23,  25, and  27 in a tenfold nested CV (stratified by age). 
RVR is a Bayesian sparse learning approach that prunes 
the basic functions with weak precision, and its param-
eter optimization is not necessary for contrast to SVR 
[37]. RVR was implemented for expectation maximiza-
tion with a precomputed linear kernel. GPR is a nonpara-
metric Bayesian approach by adjusting hyperparameters 
to maximize the likelihood of the training data [38]. As 
suggested previously [39], we used a linear kernel to train 
the machine learning model in this study, the scikit-learn 
library was used to perform our experiments [40, 41].

The brain age model was constructed based on the 
regional contributions to PBSI score in NCs. Tenfold 
cross-validations were utilized to set out the brain age 
model and estimate age estimation accuracy. To make 
the age distribution of the training and validation sets 
similar, and to further evaluate the reproducibility of the 
model, a strategy of stratification by age was used and 
the data distribution was shuffled 10 times. After that, 
we also obtained the predicted age of the ASDs using the 
pre-trained models based on the NCs. Finally, the mean 
predicted age of each individual in the validation set was 
taken as brain age, and then BrainAGE was calculated as 
the difference between predicted and chronological age. 
Based on BrainAGE, ASDs were divided into two groups, 
in consideration of the potential generalization errors, 
the standard deviation (SD) of brain age was calculated, 
and the delayed development (DED) group was defined 
as brain age + 0.5SD < chronological age, and the prema-
ture development (PRD) group was defined as brain age-
0.5SD > chronological age.

The correlation coefficient, mean absolute error 
(MAE), and root mean square error (RMSE) were cal-
culated in the validation set of each trained model, and 
the mean and standard deviation of these indicators for 
the 10 shuffles were obtained. Besides, the correlations 
between predicted and chronological age in each kind 
of model were calculated. The paired Student’s t test was 
performed for the MAE of the three models, corrected 
by Bonferroni’s method (P < 0.05/3). According to the 
predicted performance of three models (SVR, RVR, and 
GPR), the model with the highest predicted performance 
was used in further analyses.

Gene expression data processing
The normalized microarray gene expression data of 
2 donated brains with the whole brain coverage were 
obtained from the AHBA (http:// human. brain- map. org) 
[27, 28]. The preprocessing of gene expression data fol-
lowed a newly proposed pipeline based on AHBA data 

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
http://human.brain-map.org
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[42]. Briefly, probes were reassigned to genes by utilizing 
the latest NCBI database, probes were further excluded 
with expression intensity lower than the background sig-
nal in more than 50% of samples. After that, probes were 
selected with the highest correlation with the RNA-seq 
data and the scaled robust sigmoid method was used in 
data normalization. The Montreal Neurological Institute 
(MNI) coordinate of each sample was provided by the 
AHBA, and the samples were included in each brain area 
if the largest Euclidean distance calculated between each 
sample and voxel in the mask (180 areas for each hemi-
sphere) was within 3  mm [42], the average expression 
of samples in each mask was regarded as the expression 
of each brain area. Finally, 10,185 candidate genes were 
obtained after data preprocessing and the gene expres-
sion values in each brain area were obtained.

Transcription‑neuroimaging association across brain 
regions
The mean regional contributions to PBSI score in 
each brain area can be obtained in ASDs and NCs, and 
Δregional contributions to PBSI score were defined as 
the difference between the mean regional contributions 
to PBSI score of ASDs and NCs (ASDs-NCs). Spearman 
correlation across brain areas analysis was performed to 
evaluate the associations between the Δregional contri-
butions to PBSI score and the gene expression, to explore 
the genes that potentially regulate the difference in 
brain variation between ASDs and NCs. The Metascape 
(https:// metas cape. org/ gp/ index. html) was used for gene 
functional annotations and cell-type enrichment analy-
sis which is based on over 40 bioinformatics knowledge-
bases (terms across different ontology sources, including 
KEGG Pathway, GO Biological Processes, Reactome 
Gene Sets, Canonical Pathways, Cell-Type Signatures, 
CORUM, TRRUST, DisGeNET, PaGenBase, Transcrip-
tion Factor Targets, WikiPathways and COVID) [43]. 
The Benjamini and Hochberg FDR (BH-FDR, q < 0.05) 
method was used to correct multiple testing.

Statistical analysis
The PBSI scores were calculated separately in each group 
(ASDs and NCs), and an appropriate test based on data 
distribution was used to evaluate the difference in PBSI 
scores between ASDs and NCs (P < 0.05). The age and sex 
were regards as covariates for all group comparisons. A 
two-sample t test was used for normal distribution data, 
and a Wilcoxon rank sum test was used for non-normally 
distribution data. The Spearman correlations were per-
formed to evaluate the relationship between PBSI scores 
and age, and between PBSI scores and cognition scores 
(P < 0.05). For association with cognition scores, age and 
sex were taken as covariates. The Autism Diagnostic 

Interview-Revised (ADI-R) is considered one of the “gold 
standard” assessment measures in the evaluation of ASD 
[44]. For cognition evaluation, the FIQ, the Restricted, 
Repetitive, and Stereotyped Patterns of Behavior (ADI-R-
RRB) scores, Reciprocal Social Interaction scores (ADI-
R-SOC) and Abnormalities in Communication Verbal 
scores (ADI-R-VER) from ADI-R were included in the 
analyses [45].

To explore the effects of the DED and PRD group on 
the cognitive scores (i.e., FIQ, ADI-R-RRB scores, ADI-
R-SOC scores, and ADI-R-VER scores) and BrainAGE, 
an appropriate test based on data distribution was per-
formed between the DED group and the PRD group in 
cognition evaluations.

Results
Clinical features and demographics analysis
Compared to NCs, patients with ASDs showed lower 
PBSI scores (ASD, median (Q1, Q3) = 0.70 (0.68, 0.72); 
NC, median (Q1, Q3) = 0.70 (0.68, 0.72); P = 1.6 ×   10−3, 
Fig. 2a). Besides, patients with ASDs also showed lower 
PBSI scores than NCs in ABIDE I and ABIDE II, respec-
tively (Figure S3, Additional file  1). The PBSI scores 
showed significant negative correlations with age in total 
subjects (ρ = − 0.14, P = 3.8 ×  10–7, Fig.  2b), in patients 
of ASDs (ρ = − 0.17, P = 2.4 ×  10–5, Fig.  2c), and in NCs 
(ρ = − 0.085, P = 2.2 ×  10–2, Fig. 2d). The significant corre-
lations were also found in subgroup analyses for ABIDE I 
and ABIDE II (ABIDE I, ρ = − 0.18, P = 6.72 ×  10–6; ABIDE 
II, ρ = − 0.13, P = 6.47 ×  10–4, Figure S4, Additional file 1). 
However, no significant difference was found in the PBSI 
score between males and females (P = 0.92), and no sig-
nificant relationship was found between the PBSI score 
and FIQ, ADI-R-SOC, ADI-R-VER, and ADI-R-RRB in 
neither total subjects nor subgroups with age and sex as 
covariates (Figure S5, Additional file 1).

On behalf of the contribution of brain morphology var-
iability, the mapping of average regional measures of PBSI 
score in ASDs is shown in Fig. 3a, and NCs are shown in 
Fig. 3b. Thus, compared to NCs, 126 brain areas showed 
significant differences in ASDs (P < 0.05/360, Fig.  3c), 
which were dispersedly distributed in the cerebral cortex. 
Especially, among 126 brain areas, half of them belong to 
the somatomotor network (n = 24) and default network 
(n = 23) and visual network (n = 22). The detailed descrip-
tion of 126 brain areas is in Table S3 (Additional file 2).

Validation and optimization of three brain age models
RVR model achieved the best performance compared 
to the other two models (RVR vs GPR, P = 0.01; RVR 
vs SVR, P = 0.07). Besides, the RVR model showed the 
highest correlation with chronological age in ASDs 
(ρ = 0.69, P < 0.001) and NCs (ρ = 0.58, P < 0.001), 

https://metascape.org/gp/index.html
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compared with SVR (ASDs, ρ = 0.59, P < 0.001; NCs, 
ρ = 0.48, P < 0.001) and GPR (ASDs, ρ = 0.49, P < 0.001; 
NCs, ρ = 0.49, P < 0.001) (Figure S6, Additional file  1), 
so BrainAGE predicted by RVR were used in further 
analyses. The distribution of BrainAGE (the difference 
between predicted age and chronological age) pre-
dicted by RVR in ASDs and NCs is shown in Figure S7 
(Additional file 1).

Besides, in consideration of the potential effects of 
site on age, we regressed age with the site as a covariate, 
and used the site-removed age to retrain the brain age 
model. Spearman correlations were performed between 
the brain age predicted based on true chronological age 
and site-removed chronological age. The results showed 
highly consistent correlations in both ASDs (ρ = 0.89, 
P < 0.001) and NCs (ρ = 0.87, P < 0.001) (Figure S8, Addi-
tional file  1). Furthermore, in order to address the 
potential site effects in covariance, we also added Cov-
Bat harmonization [46] as a sensitivity analysis to pro-
vide validations. Spearman correlations were performed 
between brain age predicted by ComBat-Harmonized 
data and CovBat-Harmonized data and showed high 
correlations (ρ = 0.78, P < 0.001), and the Bland–Altman 
analysis also revealed a good agreement for the predicted 
brain ages based on the two methods (Figures  S9 and 
S10, Additional file 1).

BrainAGE prediction and clinical measures
Patients of ASDs were divided into a DED group (i.e., 
brain age + 0.5SD < chronological age, deviation < 0, 
n = 209) and a PRD group (i.e., brain age − 0.5SD > chron-
ological age, deviation > 0, n = 246), according to Brain-
AGE, which is calculated as the difference between 
predicted and chronological age. Especially, after regress-
ing age and sex, the PRD group showed significantly 
higher ADI-R-VER scores than the DED group (P = 0.028, 
two-sample t test) (Fig.  3d), which informed the PRD 
subjects had more severe ASD clinical symptoms than 
the DED group. However, there was no significant dif-
ference between the DED group and PRD group in FIQ 
(P = 0.25), ADI-R-SOC scores (P = 0.12), and ADI-R-RRB 
scores (P = 0.13).

Genes associated with PBSI
Finally, 430 genes showed significant associations with 
Δregional contributions to PBSI scores (BH-FDR, 
q < 0.05, Table  S4, Additional file  2). The functional 
enrichment analyses revealed that the genes were associ-
ated with pathways like short-term memory, export from 
the cell, regulation of nervous system development, and 
regulation of nervous system process. Besides, the cell-
type enrichment analyses showed the genes were mostly 
enriched in cells of manno midbrain neurotypes (HRGL3 
and HRGL1) (Fig. 4a–d).

Fig. 2 The difference in the PBSI score between subgroups and the associations between PBSI and age. a The difference in the PBSI scores 
between ASDs and NCs (with age and sex as covariates). b–d Correlations between the PBSI score and age in b all subjects, c ASDs, and d NCs. 
Abbreviation ASD, Autism spectrum disorder; NC, normal control; PBSI, person-based similarity index
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Discussion
In this study, we examined variability in the brain mor-
phology in ASD, at the level of brain structural profiles 
assessed by using the PBSI, which is a personalized esti-
mate of similarity between GMV profiles of an ASD indi-
vidual to that of other individuals in the same group. The 
PBSI score of GMV was negatively related to age regard-
less of the sample group, and the PBSI score was sig-
nificantly lower in ASDs than in NCs, indicating greater 
heterogeneity in disease and line with age increase. The 
majority of brain regions with between-group differences 
in regional contributions to brain cortical morphologi-
cal variation mainly appeared in somatomotor, default, 
and visual networks. At the level of each brain regional 
measure, the BrainAGE model was constructed using the 
RVR model which showed the highest predicted perfor-
mance in the comparison of the three predicted mod-
els. The PRD group in ASD demonstrated more severe 
abnormalities in communication. In addition, 430 genes 

were identified in relating inter-regional profiles of gene 
expression from AHBA with inter-regional profiles of 
brain cortical morphometric variation between ASDs 
and NCs. Then, we were interested in the pathways to 
which the genes belonged that were associated with 
brain cortical morphometric variation. The pathways, 
including short-term memory, regulation of system pro-
cess, and regulation of nervous system process, were 
dominated by gene sets for manno midbrain neurotypes, 
indicating the biological relevance to brain cortical mor-
phometric variation.

PBSI was proposed as a novel evaluation for variation 
in brain structural profiles at the individual level, which 
can provide more information about inter-individual var-
iability in brain structural profiles, and it has been suc-
cessfully used in the analyses of mental illness [12]. In 
our study, the PBSI scores showed a significant difference 
between ASDs and NCs, which informed us that PBSI is 
a neuroimaging biomarker that may help to distinguish 

Fig. 3 The distribution of average regional contributions to PBSI score in ASDs and NCs and between-group comparisons. a–b Distribution maps 
of average regional contributions to PBSI score in a ASDs and b NCs. The color bar represents the average value of regional contributions to PBSI 
score. c Distribution maps of group differences of regional contributions to PBSI score. The color represents the Z values (in comparison to NCs). 
d The comparison of ADI-R-VER scores between the PRD group and DED group in ASDs with age and sex as covariates. The y-axis represents 
the ADI-R-VER scores. Abbreviation: ADI-R-VER, the Abnormalities in Communication Verbal scores from the Autism Diagnostic Interview-Revised 
evaluation from the Autism Diagnostic Interview-Revised evaluation; ASD, Autism spectrum disorder; DED, the delayed development group; NC, 
normal control; PBSI, person-based similarity index; PRD, the premature development group
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ASDs and NCs. Besides, PBSI showed significant cor-
relations with ages, both in ASDs and NCs. It has been 
reported that advancing age is correlated with smaller 
subcortical volumes and thinner cortices in healthy 
adults [47–49], and the brain morphometric measures 
can also be changed with the increase with age [50, 51]. 
The significant associations with age revealed that per-
son-based measures of brain morphometry can reflect 
certain age information, laying the foundation for Brain-
AGE analysis and embedding in the brain developmental 
maps that may facilitate personalized medicine [21].

Regional contributions to PBSI scores can reflect the 
variation of brain cortical volume at the level of brain 
areas. Based on regional contributions to PBSI score, 126 
brain areas showed a significant difference between ASDs 
and NCs, which may play an important role in regulat-
ing the development of the human brain nervous system. 
For example, Brodmann’s areas 3b (3b) has been reported 
to show volume increases in down syndrome patients 
[52]. The inferior parietal cortex (e.g., PFop, PGp, PGs) 

is charged with lots of higher cognitive functions and 
can integrate information from many sensory modalities 
[53]. The posterior insula (PoI2) plays a critical role in the 
decision-making neural network and is associated with 
delaying gratification [54]. Together, the changes in brain 
cortex variation in those important brain regions may 
play a key role in regulating the changes in neuroimage 
phenotypes in ASD.

According to regional contributions to PBSI score, 
models for predicting brain age were established, and 
the RVR model was selected according to the high pre-
dictive performance with the lowest RMSE and MAE. 
MRI-derived brain age has been identified as a compre-
hensive biomarker of brain health, which can reflect both 
advanced and resilient aging individuals [55]. BrainAGE 
can show different deviations in different kinds of mental 
disorders [56]. In our analyses, based on the BrainAGE, 
the PRD group showed significantly higher ADI-R-VER 
scores. Language difficulty is a core symptom of ASD as 
well as one of the earliest predictors of ASD diagnosis, 

Fig. 4 Pathway annotations of 430 genes and the cell-types enrichment analyses. a For each item, the globule size reflects the gene numbers, 
and the globule color represents significance. b The clusters of pathways. Each color demonstrates one kind of cluster. c–d The cell-type 
enrichment analyses of 430 genes. c. The y-axis represents the number of genes enriched in each cell type, and the colors represent different kinds 
of cell types. d The x-axis represents the -log10P value of enrichment analysis in each cell type
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and many children with ASD can have communica-
tion challenges across all language sub-systems [57]. 
The results suggest that ASDs with premature brain 
development may have more severe abnormalities in 
communication.

Gene expression analyses revealed that 430 genes 
showed significant associations with the difference of 
average regional contributions to PBSI score between 
ASDs and NCs. The genes were enriched in short-term 
memory, regulation of system process, and regulation 
of nervous system process, and showed significant cor-
relations with manno midbrain neurotypes. It has been 
reported that ASD is linked to impaired synaptic home-
ostasis and neuronal changes that emerge in the early 
period of life [58, 59], and midbrain dopamine (mDA) 
neurons can be replaced to provide long-term improve-
ment in motor functions in patients with Parkinson’s dis-
ease [60]. These findings further prove the role of gene 
expression in regulating brain morphology in ASD.

Limitations
Several limitations should be mentioned when interpret-
ing our findings. First, the gene expression data were 
obtained from postmortem brains, and imaging data 
were derived from ABIDE with ASD patients and normal 
controls, there is a gap between expression data and brain 
image data. In addition, although Combat harmonization 
was used to remove the center bias, the spatial covari-
ance of site-effect was not considered. Thus, we further 
provide sensitivity analyses based on CovBat harmoniza-
tion method to prove the robustness of our results. Fur-
thermore, the sufficient sample size is crucial to model 
training of BrainAGE, and the results should be further 
verified in large sample data in the future.

Conclusions
In summary, this study characterized the differences 
in the cortical morphological similarity between ASDs 
and NCs by PBSI and demonstrated a high correlation 
with age. Furthermore, based on regional contributions 
to PBSI score, BrainAGE models were constructed, and 
the PRD group showed more severe communication 
symptoms. Lastly, 430 genes were found associated with 
the difference in regional contributions to PBSI scores 
between ASDs and NCs. The functional enrichment 
analyses of genes can link underlying molecular pertur-
bations with structural morphology changes in brain 
cortical for ASD. Our study of brain morphology from 
epigenetic heterogeneity to molecule perturbations may 
lead to the development of new types of therapy and per-
sonalized approaches to treatment.
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