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Abstract 

Background:  Clinical and etiological varieties remain major obstacles to decompose heterogeneity in autism spec-
trum disorders (ASD). Recently, neuroimaging raised new hope to identify neurosubtypes of ASD for further under-
standing the biological mechanisms behind the disorder.

Methods:  In this study, brain structural MRI data and clinical measures of 221 male subjects with ASD and 257 
healthy controls were selected from 7 independent sites from the Autism Brain Image Data Exchange database 
(ABIDE). Heterogeneity through discriminative analysis (HYDRA), a recently-proposed semi-supervised clustering 
method was utilized to divide individuals with ASD into several neurosubtypes by regional volumetric measures of 
gray matter, white matter, and cerebrospinal fluid. Voxel-wise volume, clinical measures, dynamic resting-state func-
tional magnetic resonance imaging (R-fMRI) measures among different neurosubtypes of ASD were explored. In addi-
tion, support vector machine (SVM) model was applied to test whether the neurosubtyping of ASD could improve 
diagnostic accuracy of ASD.

Results:  Two neurosubtypes of ASD with different voxel-wise volumetric patterns were revealed. The full-scale 
intelligence quotient (IQ), verbal IQ, Autism Diagnostic Observation Schedule (ADOS) total scores and ADOS severity 
scores were significantly different between the two neurosubtypes, the total intracranial volume was correlated with 
performance IQ in Subtype 1 and was correlated with ADOS communication score and ADOS social score in Subtype 
2. Compared with Subtype 2, Subtype 1 showed lower dynamic R-fMRI measures, lower dynamic functional archi-
tecture stability, higher mean and lower standard deviation (SD) of concordance among dynamic R-fMRI measures in 
cerebellum. In addition, classification accuracies between ASD neurosubtypes and healthy controls were significantly 
improved compared with classification accuracy between entire ASD group and healthy controls.

Limitations:  The present study excluded female subjects and left-handed subjects, which limited the ability to inves-
tigate the associations between these factors and the heterogeneity of ASD.

Conclusions:  The two distinct neuroanatomical subtypes of ASD validated by other data modalities not only adds 
reliability of the result, but also bridges from brain phenomenology to clinical behavior. The current neurosubtypes 
of ASD could facilitate understanding the neuropathology of this disorder and could be potentially used to improve 
clinical decision-making process and optimize treatment.
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Background
Autism spectrum disorder (ASD), as an increasingly 
common neurodevelopmental disorder, affects 1–2% 
of the general population [1, 2]. ASD is characterized 
by impairments in social cognition as well as restricted 
and repetitive behaviors (RRB) [3]. However, different 
from other psychiatric disorders characterized by symp-
tom severity, patients with ASD display a broad range of 
behavior types and severities [4]. For instance, verbal and 
nonverbal intelligence quotient (IQ) are highly variable 
in patients with ASD [5] and RRB can range from low-
level stereotyped motor behaviors to higher order behav-
iors such as insistence on sameness in ASD patients [3]. 
ASD patients are frequently associated with comorbid 
disorders such as language skills or coordination disor-
ders, or attention deficit and hyperactivity disorder [6]. 
Besides, more than 100 genes [7] and many aspects of 
brain structure have been associated with ASD [8]. The 
high biological and clinical heterogeneity of ASD patients 
have hindered attempts at understanding the neurobio-
logical mechanisms of the disorder [9]. Until recently, 
the analysis of ASD mainly depends on the spectrum of 
symptom severity [10], while the results of these efforts 
have been neither distinguishable nor fully reflecting the 
underlying biology [11]. Thus, the DSM-5 have replaced 
subcategories of autism into a single diagnostic category 
of ASD [3]. Despite the cancellation of ASD subtypes, 
subtyping of ASD has several clinical benefits, such as 
early and accurate detection, developmental trajectories, 
and response to treatment.

Notably, the development of ASD has been associated 
with abundant heterogeneity and this developmental 
heterogeneity is manifested in head circumference and 
total brain volume [12–14]. However, abnormal increase 
of head circumference cannot be observed in all subjects 
with ASD, one research implies that about 80% of sub-
jects with ASD have no clinically enlarged brain [15]. 
Hence, the abnormal development of head circumfer-
ence in patients with ASD might represent a potential 
neurological subtype of ASD [16]. Recently, neuroimag-
ing offered new possibilities to further understand the 
biological mechanisms behind ASD. A recent cluster 
analysis based on whole-brain voxel-based morphometry 
(VBM) obtained 3 ASD neurosubtypes [17]. However, 
different numbers of neurosubtypes have been reported 
by previous studies based on the neuroimaging features 
including cortical thickness and regional volumes [18], or 
intrinsic functional connectivity based on cortical region 
of interests (ROIs) [19]. The diverse results of these stud-
ies may be mainly due to the use of different image fea-
tures. In addition, the differences in these findings may 
be due to factors such as sample size, sex ratio and clus-
tering algorithm, etc.

In order to overcome the high heterogeneity of ASD, 
several unsupervised clustering methods have been used 
[20]. Different from the unsupervised clustering methods 
in previous studies [20], heterogeneity through discrimi-
native analysis (HYDRA) is one of the first algorithms 
to explore anatomical heterogeneity by supervised clus-
tering with adjustable number of clusters. HYDRA not 
only inherits the ability of non-linear kernel classification 
methods to accurately fit to heterogeneous data in terms 
of disease prediction, but also provides explicit cluster-
ing information that can be used to determine subtypes 
of pathology [21]. To date, HYDRA has been success-
fully used in the subtype of Alzheimer’s disease [21] and 
schizophrenia [22]. We hypothesized that this advanced 
clustering method would effectively reveal distinct neu-
rosubtypes of ASD and build stable brain-behavior rela-
tionships which could potentially be used to improve 
clinical decision-making process and optimize treatment 
in the future. Therefore, in this study, HYDRA was used 
to classify male ASD patients into distinct neurosub-
types with regional volumetric measures of gray matter, 
white matter, and cerebrospinal fluid (CSF) from struc-
tural magnetic resonance imaging (MRI), brain-behavior 
relationships were assessed in different neurosubtypes. 
In addition, dynamic resting-state functional magnetic 
resonance imaging (R-fMRI) and machine learning-
based classification were used to test the rationality of the 
neurosubtypes.

Materials and methods
Datasets and participant selection
Publicly-available MRI data and phenotype data 
were downloaded from the Autism Brain Image Data 
Exchange database (ABIDE) (http://fcon_1000.projects.
nitrc.org/indi/abide/). In order to improve the reliabil-
ity and repeatability of the results, a strict data exclu-
sion scheme was adopted in this study. Data curation 
was conducted using the following exclusion criteria: (1) 
female subjects; (2) left or mixed handedness or subjects 
with no handedness information; (3) subjects with no 
full-scale IQ information or full-scale IQ below 80; (4) to 
reduce ageing effects, subjects older than 45 years of age 
were excluded; (5) an initial quality check was performed 
by an experienced radiologist, then the Image Quality 
Rate (IQR) in CAT12 software (Computational Anat-
omy Toolbox 12, CAT12, http://​www.​neuro.​uni-​jena.​de/​
cat/) was used in the quality control of structural images 
to avoid the subjectivity of manual check. As low image 
quality can lead to underestimation of the gray matter 
in most preprocessings [23], therefore, we adopted strict 
image quality control procedures, and subjects with IQR 
lower than B- were excluded (The detailed image qual-
ity rating criterion and quality control steps are shown 
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in Additional file  1: Fig. S1 and Supplementary Text. In 
addition, Additional file  1: Table  S1 demonstrates the 
quality control metrics for the enrolled subjects, no sig-
nificant differences were found in terms of image qual-
ity between health controls and ASD patients). (6) Study 
sites with less than 20 ASD patients were excluded. In 
addition, the New York University Medical Center (NYU) 
sample 2 in ABIDE-II databases were excluded because 
different scanning parameters compared with NYU sam-
ple in ABIDE-I and NYU sample 1 in ABIDE-II. The 
individuals scanned using a head coil with 32 channels 
in Kennedy Krieger Institute (KKI) sample of ABIDE-II 
were excluded because the rest KKI data from ABIDE-
I and ABIDE-II were scanned using a head coil with 8 
channels. After applying these exclusion criteria, data of 
478 subjects from ABIDE-I and ABIDE-II from 7 sites 
remained. Demographics for the resultant sample (221 
ASD patients and 257 healthy controls) are presented in 
Table 1.

Image preprocessing
At first, CAT12 was applied for VBM preprocessing to 
structural MRI data from each subject. The main steps 
applied to the structural MRI data were as follows: (1) 
normalization of T1 image into the Montreal Neurologi-
cal Institute (MNI) space and the voxel size was resam-
pled into 1.5 × 1.5 × 1.5 mm3; (2) segmentation of the 
normalized images into gray matter, white matter and 
CSF; (3) modulation to convert the voxel values of tissue 
concentration (density) to volume; (4) calculation of the 
volume value based on the ROI from gray matter, white 
matter and CSF; (5) smoothing with an 8-mm full width 
at half maximum (FWHM) isotropic Gaussian kernel.

Subtyping ASD with HYDRA
For each subject, we obtained volumes of 142 ROIs (The 
ROIs were derived from the Neuromorphometrics atlas, 
http://​www.​neuro​morph​ometr​ics.​com/, detailed infor-
mation of the ROIs is listed in Additional file 1: Table S3) 
from structural MRI data as features for further clus-
ter analysis. Prior to subtyping, manual check was car-
ried out to check the alignment between the atlas and 
the normalized volumetric maps, and to eliminate any 
absurd values of volumes (Details are shown in the Sup-
plementary Text). Then the effect of age and site-specific 
factors on the ROI volumes were estimated using a linear 
model and were regressed out [17]. The covariate regres-
sion strategy was also applied to further voxel-wise volu-
metric and dynamic R-fMRI measures analysis of ASD 
subtypes, as well as classification between ASD subtypes 
and healthy controls.

HYDRA was utilized based on the volumetric meas-
ures of the ROIs to identify ASD subtypes [21]. HYDRA 

consists of the following steps: Firstly, ASD subjects are 
given negative labels and healthy controls are given posi-
tive labels. HYDRA will determine the number of hyper-
planes by the K value of the clusters number to generate 
convex polyhedron for separating ASD patients from the 
healthy controls. An extending standard linear maxi-
mum margin classifiers is introduced to calculate the 
distance from each ASD subject to each hyperplane, and 
ASD subjects will be assigned to the hyperplane closest 
to themselves, so that all ASD subjects are divided into 
K clusters. Following parameters were used to ensure 
convergent and stable clustering results, and to alleviate 
computational burden: 50 iterations between estimating 
hyperplanes and cluster estimation, 20 clustering consen-
sus steps, regularization parameter of 0.25, 10 cross-vali-
dation folds and clustering range from 2 to 8.

In this experiment, the above process runs within the 
framework of tenfold cross-validation. For each time, 9 
folds subjects are selected for the above clustering pro-
cess. The process of 50 times iterations is adopted to 
find the optimal convex plane for clustering estimation. 
Finally, for each ASD subject, it participated in 9 cluster-
ing processes and obtained 9 same or different clustering 
labels. The 20 clustering consensus steps will determine 
the final cluster label of each ASD by a cooccurrence 
matrix generated from the labels of 9 clustering pro-
cesses. Meanwhile, the algorithm quantifies the similarity 
between clustering results in a 10-folds cross-validated 
fashion by the adjusted rand index (ARI) [24] to assess 
the clustering stability. ARI evaluates the contingency of 
grouping and provides a more conservative overlap esti-
mation. The values of ARI range from 0 to 1, and the ARI 
value of 1 represents a perfect clustering. A schematic 
illustration of the HYDRA method is shown in Addi-
tional file 1: Fig. S3.

Reproducibility analysis of ASD subtypes
To assess the reproducibility of subtypes, we took a 
series of analyses, including split-sample tests [25, 26] 
and leave-one-site-out validation [27]. In order to evalu-
ate the reproducibility of ASD subtypes, we conducted 
a split-sample test analysis. The healthy controls and 
patients were randomly divided into two parts and then 
HYDRA was applied in these two parts, respectively. 
Age was matched between healthy controls and ASD in 
the two splits (Additional file  1: Table  S4). Voxel-wise 
volumetric maps were further compared between healthy 
controls and each ASD subtype in the two splits.

In addition, the subtypes were further validated using 
a leave-one-site-out strategy. In this strategy, the data 
of 6 sites were used to train HYDRA models and sub-
type labels of the last remaining sites were identified 
by the trained models. This procedure was repeated 7 
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times to complete possible combinations for all sites. 
In other words, in each leave-one-site-out process, 
one site was regarded as an independent site, and the 
predicted labels of this site was determined by the 
trained model from the other 6 sites. Finally, the pre-
dicted labels of leave-one-site-out strategy from all 7 
sites were compared with the original labels obtained 
by taking all 7 sites together. The voxel-wise gray mat-
ter volumetric maps were estimated using leave-one-
site-out-predicted results between each subtype and 
healthy controls.

Voxel‑wise volumetric analysis of ASD subtypes
We conducted voxel-wise volumetric analyses using 
regionally linear multivariate discriminative statistical 
mapping (MIDAS) [28] to explore the alterations of gray 
and white volume in ASD subtypes with age and site as 
covariates. Compared with other information-mapping 
methods, MIDAS effectively determines the regionally 
varying, anisotropic filtering of any image data that opti-
mally captures group differences [28]. Voxel-wise group 
(ASD subtypes and healthy control) comparisons of the 
smoothed gray and white matter volume maps were per-
formed using two sample t-tests within SPM12. Similarly, 
in this step age and site were included in a general lin-
ear model as covariates. Then, the t-statistic maps were 
converted to the effect size (Cohen’s d) maps. Finally, the 
voxel-wise statistical significance values (p-values) were 
corrected by false discovery rate (FDR) (FDR-p < 0.05) 
and were then used as a mask to show the effect size 
maps between the groups via MIDAS.

Clinical examination of ASD subtypes
First, we verified that subtypes were composed of simi-
lar proportions of ASD patients per site based on the 
chi-square test. To assess whether severity of ASD dif-
fered between subtypes, a two-sample t-test was utilized 
on the full-scale IQ, verbal IQ, performance IQ, Autism 
Diagnostic Observation Schedule (ADOS) total, social, 
communication, RRB, severity scores, Autism Diagnos-
tic Interview Revised (ADI-R) Social, Verbal, RRB, Social 
Responsiveness Scale (SRS) total, awareness, cognition, 
communication, motivation, and mannerisms respec-
tively. Given a widely hypothesized characteristic on ver-
bal and non-verbal IQ discrepancy in ASD [29, 30], the 
verbal IQ and performance IQ was included. Besides, 
within each subtype, the relationship between total 
intracranial volume and above demographic and clini-
cal data was assessed using Pearson’s correlation. In this 
procedure, subjects with missing ADOS measures were 
excluded.

Dynamic R‑fMRI measures analysis of ASD subtypes
In order to verify whether the two neuroanatomical sub-
types of ASD were differed in brain functions, we ana-
lyzed R-fMRI data from the same cohorts included in the 
structural MRI dataset. In this step, subjects with head 
movements greater 2.0 mm of translation or 2.0 degrees 
of rotation in any direction were excluded. All dynamic 
R-fMRI measures were calculated via Data Processing 
& Analysis for Brain Imaging (DPABI, http://​rfmri.​org/​
DPABI). At first, we obtained 4 dynamic R-fMRI meas-
ures including regional homogeneity (ReHo), voxel-mir-
rored homotopic connectivity (VMHC), network degree 
centrality (DC) and global signal correlation (GSCorr). 
To characterize the dynamic R-fMRI measures, we com-
puted the standard deviation (SD) map across time win-
dows of each measure for subsequent statistical analysis. 
Besides, we calculated Kendall’s coefficient of concord-
ance (KCC) for the 4 dynamic R-fMRI measures across 
time windows as the dynamic volume-wise concordance. 
The mean and SD of the time series of subjects’ dynamic 
volume-wise concordance index (one for each subject) 
were performed using two-sample t-tests, age, site, and 
head motion (mean framewise-displacement, FD) were 
treated as covariates by the general linear model. Finally, 
we calculated the voxel-to-atlas KCC mapping, which 
characterizes the stability of dynamic functional archi-
tecture. The detailed preprocessing and dynamic R-fMRI 
measures calculation steps are shown in Supplementary 
Text. Voxel-wise group comparisons (between Subtype 
1 and Subtype 2) of the above-mentioned R-fMRI meas-
ures mapping were performed using two sample t-tests 
within SPM 12, age, site, and head motion (mean FD) 
were included in the general linear model as covariates. 
Gaussian Random Field (GRF) correction was performed 
to control false positives (voxel-level p < 0.001, to cluster-
level p < 0.01, two-tailed). In addition, we also performed 
comparisons in dynamic R-fMRI measures between 
healthy controls and ASD subtypes.

Classification between subtypes of ASD and healthy 
controls
To test whether subtyping could improve diagnostic 
label accuracy beyond group average comparisons, and 
to identify possible biomarkers from brain regions with 
volumetric differences, the support vector machine 
(SVM) model was applied to classify ASD and healthy 
controls based on the volumetric measures of the ROIs. 
Classification was performed between different sub-
types of ASD patients and healthy controls respectively. 
In addition, classification was also performed between 
all ASD patients and healthy controls to test the effect of 
subtyping on improving classification accuracy between 

http://rfmri.org/DPABI
http://rfmri.org/DPABI
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each subtype and the healthy control group. Notably, we 
ignored the feature selection step and chose a linear ker-
nel to obtain feature weighting values. Since the weight-
ing values indirectly represent the importance of each 
feature in the classification process, we applied weighting 
values of each feature to further explore meaningful ROIs 
in subtypes, respectively.

Since there were more healthy controls than ASD and 
subtypes of ASD, which would lead to the problem of 
unbalanced classification. We randomly matched the 
numbers of healthy controls and ASD subtypes and the 
process of number matching was repeated 10 times to 
eliminate random bias. Finally, we performed tenfold 
cross-validation in each number matching and the hyper-
parameters were selected in train setting for each fold by 
a tenfold cross-validation. The final accuracy was defined 
as the average accuracy of the 10-time matching.

Results
Two subtypes of ASD based on structural MRI
In this study, we evaluated the consistency of clustering 
assignment by adjusting the number of clusters from 2 to 
8 using ARI. The maximum ARI value was found at K = 2 
(ARI = 0.82), which indicated that the ASD samples were 
optimally partitioned by 2 subtypes based on the volumes 
of anatomical ROIs. The clustering results of HYDRA are 
shown in Additional file 1: Fig. S4. There were 115 ASD 
patients assigned into Subtype 1 and 106 ASD patients 
assigned into Subtype 2.

Altered volumes in two ASD subtypes
Compared with healthy controls, ASD patients showed 
both increased and decreased gray matter and white mat-
ter volume by standard case–control test (Additional 
file  1: Fig. S5). HYDRA effectively subdivides the above 
effects and further revealed the possible neuroanatomi-
cal subtypes behind the complex brain volume changes. 
Subtypes showed marked differences in their voxel-wise 
patterns of neuroanatomical deficits. Subtype 1 showed 
an extensive gray and white matter volume increase com-
pared with healthy controls (Fig. 1). In contrast, Subtype 
2 showed an extensive gray and white matter volume 
decrease compared with healthy controls (Fig. 1).

Clinical examination across two subtypes
There are no significant differences in the site com-
position of two subtypes based on chi-square test 
(χ2 = 3.141, df = 6, p = 0.791). Using two-sample t test, 
we discovered that full-scale IQ (p < 0.001, T = 3.672), 
performance IQ (p < 0.001, T = 3.90), ADOS total 
score (p = 0.041, T = 2.064) and ADOS severity scores 
(p = 0.004, T = 2.959) were lower in Subtype 2, but 
the two subtypes did not differ in age, verbal IQ, 

communication score and RRB score (Table  2 and 
Additional file  1: Table  S5). The total intracranial vol-
ume was positively correlated with performance IQ in 
Subtype 1. Besides, the total intracranial volume was 
positively correlated with ADOS communication score 
(r = 0.233; p = 0.047) and ADOS social score (r = 0.236, 
p = 0.045) in Subtype 2 (Fig. 2).

The results of reproducibility analysis
The superior reproducibility of ASD subtypes were 
shown in the split-sample test. (Fig.  3). The voxel-wise 
volumetric patterns were also reproducible between the 
two halves in the split-half test at 2 subtypes (Additional 
file 1: Fig. S6 and Additional file 1: Fig. S7). Furthermore, 
the reproducibility analyses of the subtypes were carried 
out using the leave-one-site-out cross-validation. When 
the number of clusters was set to 2, the predicted labels 
of 2 subtypes from all 7 sites using leave-one-site-out 
were compared with the original assignments obtained 
by taking all the sites together. The percentage overlap 
of patients that were assigned to the same subtype was 
87.78% (92% in Site 1, 82.14% in Site 2, 97.14% in Site 
3, 75% in Site 4, 95.46% in Site 5, 86.84% in Site 6 and 
84.91% in Site 7, Additional file 1: Fig. S8). The analysis 
of voxel-wise gray and white matter volumetric maps was 
consistent with the original experiment (Fig. 4).

Dynamic R‑fMRI differences
After exclusion, 87 Subtype 1 and 81 Subtype 2 of ASD 
were remained. By two-sample t-test between ASD 
subtypes, we discovered that Subtype 1 showed lower 
dynamic R-fMRI measures including ReHo, DC and 
GSCorr mainly in the cerebellum (Additional file 1: Fig. 
S9). We tested the difference between ASD subtypes for 
mean and SD of concordance time series. The results of 
two sample t-test are shown in the Additional file 1: Fig. 
S10. The mean of concordance index of ASD subtype 1 is 
significantly higher than Subtype 2 (p < 0.001, T = 4.071), 
but SD is significantly lower than that of Subtype 2 
(p < 0.001, T = 2.654) in the cerebellum. In addition, com-
pared with Subtype2, Subtype 1 showed lower stability of 
dynamic functional architecture (Additional file  1: Fig. 
S11).

In terms of two sample t-test between healthy controls 
and ASD subtypes, Subtype 1 showed lower dynamic 
R-fMRI measures including DC, GSCorr and ReHo 
(Additional file  1: Fig. S12). In addition, compared with 
healthy controls, Subtype 1 showed lower stability of 
dynamic functional architecture, in contrast, Subtype 2 
experienced higher stability of dynamic functional archi-
tecture (Additional file 1: Fig. S13).
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Improved classification accuracy using SVM
In the classification of healthy controls and all ASD 
patients, the SVM model obtained a mean classifica-
tion accuracy of 51.37%. By using HYDRA to divide 
the ASD into 2 subtypes, the classification accuracies 
were significantly improved, with a classification accu-
racy of 68.17% between healthy controls and Subtype 1 

and a classification accuracy of 68.69% between healthy 
controls and Subtype 2. In addition, we calculated the 
average weight of each ROI in subtype-healthy control 
classification by linear SVM. We found that the weight 
ranking of the two subtype classification experiments 
had a great difference (Additional file 1: Fig. S14).

Fig. 1  Patterns of gray and white matter volumes in the two ASD subtypes. Compared with healthy controls (HC), A ASD1 exhibits widespread 
patterns of increased gray matter volumes, B ASD2 exhibits widespread patterns of reduced gray matter volumes, C ASD1 shows increased white 
matter volumes, D ASD 2 shows reduced white matter volumes. Effect size (Cohen’s d) maps were generated from regional volumetric maps 
masked by the set of regions that showed statistically significant differences (PFDR < 0.05) in the MIDAS analysis
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Discussion
The current ASD diagnostic system assigns a single, 
behaviorally-defined label to a population composed of 
different subgroups that may have different etiologies 
[31]. The distinct inter-subject heterogeneity of ASD has 

been considered to represent one of the most important 
obstacles for objective diagnosis and optimized treatment 
[32, 33]. The inter-subject heterogeneity may conceal 
group level differences in ASD and objectively defining 
biological subtypes is a crucial step in the future. In this 

Table 2  Demographic and clinical profiles across subgroups

The p values were calculated using a two-sample t test except for the type and site composition (aSubtype1 vs. Subtype2; bHC vs. Subtype1; cHC vs. Subtype2). 
Abbreviations: IQ, intelligence quotient; FIQ, full-scale IQ; VIQ, verbal IQ; PIQ, performance IQ; ADOS, autism diagnostic observation schedule; Social, social interaction; 
Comm, communication. RRB, restricted repetitive behavior. ADOS Total = social interaction + communication; ADI-R, autism diagnostic interview revised; SRS, Social 
Responsiveness Scale; Aware, awareness; Cognit, cognition; Motiva, motivation; Manner, mannerisms; The number of ASD patients with IQ, ADOS scores, ADI-R scores, 
and SRS scores available are described in the Supplement Table S2

Subtype 1 (n = 115) Subtype 2 (n = 106) HC (n = 257) p value a p value b p value c

Age 15.3 ± 6.8 15.5 ± 6.0 14.2 ± 6.1 0.825 0.104 0.056

Type (A/AS/P/NA) 58/11/5/41 58/12/4/32 – 0.926 – –
IQ

 FIQ 111 ± 15.3 104 ± 13.5 114 ± 12.1  < 0.001 0.182  < 0.001

 VIQ 109 ± 15.7 107 ± 16.1 114 ± 13.0 0.545 0.006 0.001

 PIQ 112 ± 14.3 103 ± 13.7 111 ± 13.0  < 0.001 0.714  < 0.001

Site 14/17/21/10/10/18/25 11/11/14/10/12/20/28 22/66/41/21/25/35/47 0.791 – –

ADOS

 Total 11.8 ± 3.6 10.7 ± 3.3 1.3 ± 1.7 0.041  < 0.001  < 0.001

 Comm 3.7 ± 1.6 3.5 ± 1.3 0.6 ± 1.0 0.469  < 0.001  < 0.001

 Social 8.1 ± 2.5 7.4 ± 2.6 0.7 ± 1.0 0.111  < 0.001  < 0.001

 RRB 2.1 ± 1.8 1.7 ± 1.5 0.1 ± 0.5 0.090  < 0.001  < 0.001

 Severity 7.7 ± 1.5 6.4 ± 2.4 – 0.004 – –
ADI-R

 Social 20.5 ± 5.0 19.5 ± 5.2 – 0.209 – –

 Verbal 16.3 ± 4.3 15.4 ± 4.6 – 0.219 – –

 RRB 6.1 ± 2.5 6.4 ± 2.5 – 0.517 – –

SRS

 Total 96.1 ± 32.8 90.5 ± 32.0 17.7 ± 12.9 0.342  < 0.001  < 0.001

 Aware 13.2 ± 4.0 11.7 ± 3.4 4.3 ± 2.7 0.096  < 0.001  < 0.001

 Cognit 16.6 ± 6.2 14.9 ± 5.8 2.8 ± 2.7 0.223  < 0.001  < 0.001

 Comm 33.8 ± 10.1 28.9 ± 11.8 5.7 ± 5.1 0.058  < 0.001  < 0.001

 Motiva 15.5 ± 5.8 12.9 ± 7.3 3.7 ± 3.1 0.095  < 0.001  < 0.001

 Manner 18.9 ± 6.3 17.3 ± 7.1 1.9 ± 2.5 0.316  < 0.001  < 0.001

Fig. 2  Associations between total intracranial volume and clinical measures in the two subtypes. A Total intracranial volume is correlated with 
performance IQ in Subtype 1 (r = 0.239 and p = 0.027); B Total intracranial volume is correlated with ADOS communication score in Subtype 2 
(r = 0.233 and p = 0.047); C Total intracranial volume is correlated with ADOS social score in Subtype 2 (r = 0.236 and p = 0.045)
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study, an advanced semi-supervised clustering approach 
was used to subtype male ASD into two neurosubtypes 
based on regional volumetric profiles from structural 
MRI data. In accord with the latest knowledge of neuro-
imaging heterogeneity, our analysis revealed that the sub-
types which were not detectible by clinical measures, had 
brain-behavior and brain functional differences (Fig. 5).

There is a consensus that heterogeneity underlies the 
neurobiology of ASD [34]. To address the neurobiologi-
cal heterogeneity of ASD, researchers have begun to 
apply data-driven strategies to subtype ASD based on 
neuroimaging features [20]. However, the research on 
neurosubtypes of ASD have been highly diverse [20]. 
Simply put, in all studies, it was found that there were 
2–4 ASD neurosubtypes [20]. These nascent studies vary 
in data sources, simple size, sex ratio, methodology, neu-
roimaging features. In addition, a recent state-of-the-art 
review on neurosubtypes in ASD has pointed out the 
necessity for minimizing confounding factors such as 
head motion-induced artifacts and measurement noise 
in neuroimaging features [20]. In this study, large multi-
site samples are included to ensure the reliability of the 
research results, and two distinct neurosubtypes of ASD 
are uncovered. A previous study based on voxel-wise 
mapping and with similar sample characteristics (sample 
source, sample size and sex radio) identified three ASD 
neurosubtypes [17], which was inconsistent with the 
present findings. One plausible explanation was that the 
previous study attempted to exclude the influence of IQ 
in subtyping. On the contrary, we took IQ into consid-
eration in the subtyping of ASD because that IQ would 
change accordingly due to the process of the disease [5, 
35], we did not treat IQ as a confounding factor.

Previous studies on data-driven neurosubtyping of ASD 
have mainly used unsupervised clustering approaches 
such as k-means clustering or hierarchical clustering 
[17–19]. K-means clustering requires specifying cluster 
numbers beforehand, while hierarchical clustering may 
potentially lead to suboptimal findings [20]. In order 
to overcome the high heterogeneity of ASD, we used a 
recently-proposed semi-supervised machine learning 
method named HYDRA [21]. HYDRA develops a novel 
non-linear learning algorithm for integrated binary clas-
sification and subpopulation clustering, it uniquely exca-
vates cluster illness effects by modelling differences from 
healthy controls instead of clustering patients directly 
[21, 22]. Unsupervised clustering algorithms like k-means 
cluster patients according to the similarity of patients, 
which is easy to confound inter- individual diversity and 
variability irrelevant to disease [21]. HYDRA can identify 
true disease subtypes by removing the influence of con-
founding variations introduced by age, sex, scanner vari-
ation, ethnicity, and other factors, and can effectively find 
the optimal number of subtypes by varying the number 
of hyperplanes [21]. In this study, the two subtypes clus-
tered by HYDRA were robust to split sample experiments 
and leave-one-site-out experiments, which proved that 
our neurosubtypes had high cross-site reproducibility.

For neuroimaging features used in ASD neurosubtyp-
ing studies, most of the previous studies have focused on 
a single neuroimaging modality (structural features such 
as cortical thickness, geodesic distance, intensity contrast 
and surface area; or functional features like functional 
connectivity and brain network), primarily structural or 
functional MRI [17–20]. However, in neuroimaging field, 
functional measures have faced with issues of moderate 
reliability [36]. Different from functional measures, the 
current study selected reliable features from structural 
MRI. Furthermore, other data modalities including clini-
cal information and dynamic R-fMRI measures were used 
to validate the rationality of the resultant two neuroana-
tomical subtypes. To address confounding factors such 
as measurement noise and head motion-induced noise, 
a strict and objective structural image quality control 
threshold is applied in the current study. Head motion-
induced artifacts are addressed using strict excluding 
threshold (sub-voxel level threshold) in the fMRI data 
processing.

Heterogeneity of ASD is originated from genetic vari-
ation, since high-throughput genomic methods revealed 
substantial variations of genetic architecture in ASD [34]. 
However, subtyping of ASD based on genetic approaches 
is challenging [20]. On the contrary, neuroimaging stands 
a chance to bridge from micro underlying mechanisms to 
macro clinical phenotype. Since previous study, a consen-
sus has been reached that brain structural heterogeneity 

Fig. 3  Cross-validated stability of split-half samples. Results indicate 
that K = 2 yields highly reproducible subtypes in both Split 1 and Split 
2



Page 10 of 14Liu et al. Molecular Autism            (2022) 13:9 

might be one characteristic of ASD [9]. In fact, brain 
structural heterogeneity accompanies ASD patients 
through neural development. Some children with ASD 
show early onset who have signs of developmental delays 
within the first 18  months of life. However, 25–40% of 
children develop normally until 18–24  months, when 
they degenerate into ASD [37]. During early and late 
childhood, different patterns such as early overgrowth, 

slowed down or arrested growth of the brain may be 
manifested in ASD children. The differences in brain 
growth may account for brain structural heterogeneity 
of ASD [38, 39]. In addition, the different ASD subtypes 
may be associated with differential neurodevelopment 
disruptions driven by both the variation of gene copy 
number and environmental toxins, as a recent study esti-
mated that approximately 20% of individuals with ASD 

Fig. 4  GM and WM volumetric differences between each subtype and healthy controls (HC) in leave-one-site-out analysis (K = 2, PFDR < 0.05). These 
results are consistent with those obtained using the entire sample together. Abbreviations: GM, gray matter; WM, white matter
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presented with de novo genetic mutations [40], and the 
de novo genes play a role in regulating synaptic develop-
ment, neuron motility and axon guidance [41]. In this 
sense, the present two neurosubtypes of ASD take the 
first step towards understanding the neurobiology of 
ASD. A remaining challenge is to associate macroscale 
brain structural heterogeneity to microscale underlying 
mechanisms.

Previous studies have shown that the abnormal brain 
enlargement observed in ASD during early childhood 
is disproportionately accounted for by increased white 
matter, not gray matter [42], since some studies have 
shown greater increases in white matter than gray mat-
ter in young children [43, 44]. On the contrary, recent 
studies have shown an opposite trend of developmen-
tal differences observed during early brain maturation 
(later childhood and adolescence) in ASD which seems 
to be dominated by an accelerated age-related decline 
in gray matter volume [45, 46]. Notably, conventional 
case–control analyses may average across important 
inter-individual variability, ultimately yielding an aver-
age state, leading to the result biased to one side (an 
overall increase or decrease). This may be the reason for 
the obvious inconsistency in the traditional group com-
parison [47]. The present results revealed two different 
neuroanatomical patterns across a large sample of ASD 
subjects. Specifically, we found completely opposite pat-
terns of gray and white matter distribution in the two 
subtypes of ASD patients but there was no significant dif-
ference in age between the two subtypes. In line with the 

above view, we suggest that gray matter or white matter 
may decrease in some subgroups and increase in differ-
ent subgroups during early brain maturation in ASD and 
the brain abnormal development of ASD may potentially 
cause different neuroanatomical subtypes observed in 
current study.

In the current study, we found that the two neuroana-
tomically subtypes differed in clinical measures. Specifi-
cally, there were significant differences in full-scale IQ 
and performance IQ between the two ASD subtypes. 
And the subtype with higher IQ exhibited severe clini-
cal symptoms, while the subtype with lower IQ exhib-
ited moderate clinical symptoms. This seems paradoxical 
considering that ASD is characterized by intellectual dis-
ability. However, this paradox may be resolved by a series 
of genetic findings that alleles for ASD overlap broadly 
with alleles for high intelligence [48, 49]. In addition, 
the paradox is supported by the neuroanatomical result 
that the two ASD subtypes experienced distinct gray and 
white matter volumetric patterns. Specifically, a previous 
study has shown that there is a significant positive cor-
relation between the volume of gray matter and white 
matter and IQ [50]. Our results are consistent with pre-
vious findings, compared with subtype 2, subtype 1 has 
higher gray matter volume and higher IQ. One possible 
explanation is that the high heterogeneity of ASD devel-
opment changes the brain structure and further affects 
the intellectual development of ASD patients. This partly 
explains the variances in nonverbal IQ in ASD patients 
[5]. Previous studies suggested that neuroanatomy was 

Fig. 5  Main findings of similarities and differences between subtype 1 and subtype 2. Abbreviations: FIQ, full-scale IQ; PIQ, performance IQ; VIQ, 
verbal IQ; ADOS, autism diagnostic observation schedule; R-fMRI, resting-state functional magnetic resonance imaging; SD, standard deviation; RRB, 
stereotyped behaviors and restricted interests; ADI-R, autism diagnostic interview revised; SRS, Social Responsiveness Scale
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related to cognition [51] and clinical symptomatology of 
ASD patients [40]. In fact, the wide clinical heterogene-
ity among subjects with ASD hinders the diagnosis and 
treatment of ASD [52, 53]. Our results demonstrate that 
the brain-behavior relationships could be built across 
two subtypes, this brain-behavior relationships have the 
potential to improve the precision diagnosis and treat-
ment of ASD patients, which was also supported by the 
improved classification accuracies of the machine learn-
ing model.

The functional organization of the brain changes 
dynamically over sessions, even during rest [54]. Some 
studies have pointed out that the human brain responds 
to internal or external stimuli through dynamic inte-
gration and adjustment on various time scales [55]. For 
this reason, we performed dynamic R-fMRI analysis 
and found different dynamic functional patterns in the 
two subtypes. Specifically, two subtypes showed signifi-
cantly different dynamics and functional stability in the 
cerebellum. More importantly, differences in cerebellar 
structure and function are among inconsistent findings in 
patients with ASD, suggesting that cerebellar dysfunction 
may be important in the heterogeneity of ASD [56–58]. 
Therefore, our findings in the cerebellum may reconcile 
the inconsistent findings in previous studies [56–58] and 
may imply that two different etiologies are between the 
two subtypes. In addition, we found significantly dif-
ferent abilities of functional integration in the two sub-
types through the concordance among R-fMRI measures. 
Combined with the differences of cognitive function 
between the two anatomical subtypes of ASD, we specu-
late that the functional stability of ASD patients may be 
related to cognitive function, since various complex cog-
nitive functions require the brain to coordinate informa-
tion from multiple patterns over time [54, 59].

Limitations
There are several limitations in the present study. First, 
the present study excluded female subjects and left-
handed subjects, which limited the ability to investi-
gate the associations between these factors and the 
heterogeneity of ASD. To overcome this issue, a larger 
dataset which contains female and left-handed subjects 
are needed. Furthermore, other distinctions within 
these subtypes may be discovered, resulting in more 
fine-grained parsing of heterogeneity by larger sam-
ples. Second, while the large and multisite sample in 
this study is an advantage, it also reduces the depth of 
clinical phenotyping due to different clinical cognitive 
scales used across sites. Third, while cross-sectional 
profiles have clear subtyping value, they only capture a 
single point in time. Enriched profiles can be derived 
from longitudinal data, which allows to explore changes 

of ASD subtypes over time. Finally, despite the advan-
tages of reporting effect sizes and p-value for compari-
sons of independently collected samples, and the usage 
of strict multiple comparison correction methods, it is 
worth mentioning that they are not without limitations, 
and therefore, the present results should be carefully 
interpreted.

Conclusions
To sum up, through strict data inclusion criteria, large 
sample, and multi-site individuals with ASD were 
obtained. We used an advanced semi-supervised machine 
learning method to subtype ASD. Two distinct and highly 
reproducible neuroanatomical subtypes of ASD were 
found. Moreover, ASD patients belonging to different sub-
types also showed different clinical and dynamic R-fMRI 
measures. This work suggests the existence of ASD sub-
types at the neuroanatomical and functional level, and 
reveals the potential of such findings not only in improv-
ing our understanding of the mechanism of abnormal 
brain development in ASD, but also in the development of 
potential stable brain-behavior relationships of the disor-
der. With future research, these subtypes could potentially 
be used to improve clinical decision-making process and 
optimize treatment in the future.
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