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De novo missense variants disrupting 
protein–protein interactions affect risk 
for autism through gene co‑expression 
and protein networks in neuronal cell types
Siwei Chen1,2,3,9†  , Jiebiao Wang4†  , Ercument Cicek5,6  , Kathryn Roeder6,7*  , Haiyuan Yu1,2*   
and Bernie Devlin8* 

Abstract 

Background:  Whole-exome sequencing studies have been useful for identifying genes that, when mutated, affect 
risk for autism spectrum disorder (ASD). Nonetheless, the association signal primarily arises from de novo protein-
truncating variants, as opposed to the more common missense variants. Despite their commonness in humans, 
determining which missense variants affect phenotypes and how remains a challenge. We investigate the functional 
relevance of de novo missense variants, specifically whether they are likely to disrupt protein interactions, and 
nominate novel genes in risk for ASD through integrated genomic, transcriptomic, and proteomic analyses.

Methods:  Utilizing our previous interactome perturbation predictor, we identify a set of missense variants that are 
likely disruptive to protein–protein interactions. For genes encoding the disrupted interactions, we evaluate their 
expression patterns across developing brains and within specific cell types, using both bulk and inferred cell-type-
specific brain transcriptomes. Connecting all disrupted pairs of proteins, we construct an “ASD disrupted network.” 
Finally, we integrate protein interactions and cell-type-specific co-expression networks together with published 
association data to implicate novel genes in ASD risk in a cell-type-specific manner.

Results:  Extending earlier work, we show that de novo missense variants that disrupt protein interactions are 
enriched in individuals with ASD, often affecting hub proteins and disrupting hub interactions. Genes encoding 
disrupted complementary interactors tend to be risk genes, and an interaction network built from these proteins 
is enriched for ASD proteins. Consistent with other studies, genes identified by disrupted protein interactions are 
expressed early in development and in excitatory and inhibitory neuronal lineages. Using inferred gene co-expression 
for three neuronal cell types—excitatory, inhibitory, and neural progenitor—we implicate several hundred genes 
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Background
Whole-exome sequencing studies of subjects diagnosed 
with autism spectrum disorder (ASD), their unaffected 
siblings, and their parents demonstrate significantly 
elevated rates of recurrent de novo variants in certain 
genes in ASD subjects [1–4]. For some genes, recurrence 
across ASD subjects is far more than expected by chance 
and is evidence for association with ASD. The evidence, 
however, largely comes from protein-truncating variants 
(PTVs) as opposed to de novo missense (dnMis) variants. 
These results are intuitive; PTVs, on average, should be 
more damaging. Yet, dnMis variants are more common. 
Within the 6430 ASD cases recently sequenced by the 
Autism Sequencing Consortium [5] (ASC), the ASC 
analyzed 7131 de novo variants in protein-coding exons, 
of which 4503 were missense (63.1%) and 972 were PTV 
(13.6%). For the ASC study, only the most damaging 
class of dnMis variants—as judged by a composite score 
involving evolutionary conservation and likelihood an 
amino acid substitution is damaging [6]—shows strong 
signal for enrichment in ASD subjects. These missense 
variants are uncommon, 8.3% of all missense variants 
given a score.

Using an earlier version of the ASC data, with 
roughly half as many de novo variants, we previously 
documented that rare dnMis variants that disrupt 
protein–protein interaction (PPI) are also enriched in 
ASD subjects [7]. Furthermore, these variants tend to 
affect proteins with many interactions, so-called hub 
genes, and their interactors tend to be ASD genes [7]. 
Using the newly released and larger ASC dataset, we 
confirm these observations and take them in several 
new directions: (1) By defining a set of genes encoding 
these disrupted protein interactors in ASD subjects and 
another for their siblings, we evaluate their expression 
patterns in developing brain from fetal to early postnatal 
development and within general cell types of brain tissue. 
Relative to the set defined by siblings, these analyses 
show that genes encoding disrupted protein interactions 
in ASC subjects tend to be expressed at higher levels 
and earlier in development and have the highest level 
of expression in neuronal lineages of both excitatory 

and inhibitory neurons. (2) Because these variants tend 
to disrupt interactions involving hub proteins in ASC 
subjects, we build a disrupted protein network using their 
disrupted interactions to define PPI network edges and a 
complementary non-disrupted network. By contrast to 
the non-disrupted network, the disrupted network shows 
significant enrichment for ASD proteins and this tends 
to increase with a greater number of interactions per 
protein. The latter observation can be used to implicate 
additional genes and sub-networks in risk for ASD. (3) 
Based on these results, we integrate hub information, 
gene expression for three neuronal cell types, and genetic 
association information using DAWN [8, 9] (detecting 
association with networks) to implicate new genes in risk 
for ASD. DAWN identified 421, 413, and 281 significant 
genes (FDR ≤0.05) as candidate ASD genes for excitatory, 
inhibitory, and neural progenitor cells, ~ 60% of them 
are novel, and all sets show hallmarks of bonafide ASD 
genes. These sets point to neuronal morphogenesis 
and neuronal communication as critical for ASD risk, 
while for the neural progenitor cells, its DAWN set also 
shows strong enrichment for development of the limbic 
system. And, (4) we investigate these DAWN gene sets 
for whether their expression occurs across excitatory, 
inhibitory, and neural progenitor cells and which are 
unique to a particular cell type. This analysis reveals that 
the shared genes are enriched for previously identified 
genes highlighted by the recent ASC study [5], whereas 
genes whose expression is unique to a cell type tend to 
be enriched in genes implicated in ASD by other types of 
data. They also tend to function in a wide variety of roles 
in neuronal communication.

Methods
Interaction disruption prediction
A comprehensive set of high-quality physical interactions 
compiled in HINT [10] from eight widely used 
interaction databases (including BioGRID [11], MINT 
[12], iRefWeb [13], DIP [14], IntAct [15], HPRD [16], 
MIPS [17], and the PDB [18]) provides a structurally 
resolved 3D human interactome network. We evaluated 
the impact of dnMis variants on protein interactions by 

in risk (FDR ≤0.05), ~ 60% novel, with characteristics of genuine ASD genes. Across cell types, these genes affect 
neuronal morphogenesis and neuronal communication, while neural progenitor cells show strong enrichment for 
development of the limbic system.

Limitations:  Some analyses use the imperfect guilt-by-association principle; results are statistical, not functional.

Conclusions:  Disrupted protein interactions identify gene sets involved in risk for ASD. Their gene expression during 
brain development and within cell types highlights how they relate to ASD.

Keywords:  Autism spectrum disorder, De novo missense variation, Protein–protein interaction, Cell-type-specific 
transcriptome
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intersecting 6542 dnMis variants uncovered in a recent 
WES study from the ASC [5] from ASD probands and 
their unaffected siblings with 64,399 human protein 
interactions obtained from HINT. In total, we found 
3822 dnMis variants—2922 in ASD probands and 900 
in unaffected siblings—are on proteins with at least one 
known interaction within the current human interactome 
dataset, affecting 2364 probands and 737 siblings.

We employed a two-tiered predictive model we 
developed previously [7] to assess the probability a dnMis 
variant disrupts a protein interaction. For each dnMis 
variant, the model evaluates (1) whether it is likely to be 
on protein interaction interfaces and (2) whether it tends 
to have damaging functional effects on the protein. For 
(1), we applied an ensemble machine-learning algorithm 
(Interactome INSIDER [19], comprising the first full-
proteome map of human interaction interfaces) to 
predict interface residues. For each variant, on each of 
its interactions with an interaction-specific partner, we 
considered a variant to be an interaction interface residue 
for this specific interaction if it has a probability score ≥
“High” in Interactome INSIDER prediction. Next for 
(2), we evaluated its deleteriousness using PolyPhen-2 
[20] (PPH2). If a variant predicted as an interface 
residue also has a “probably damaging” PPH2 score, 
we considered this variant to disrupt the interaction. 
Using our interaction disruption predictive model, 
we identified 123 unique dnMis variants that disrupt 
a total of 524 variant–PPI pairs in ASD probands and 
26 unique variants disrupting 94 PPI pairs in siblings. 
These predicted disruptions involve 526 unique genes in 
probands. Of note, compared to our previous study, we 
tightened the tier (1) criterion from an interface score ≥ “ 
Medium” (yielding 388 candidates) to ≥ “High” (yielding 
149 candidates).

Published ASD gene lists
We compiled a total of 511 “previously implicated 
ASD genes” from two resources: (1) 102 TADA genes 
identified in our recent WES analysis [5] that carry a 
significant excess of disruptive variants in ASD subjects 
(henceforth TADA genes) and (2) 510 SFARI genes 
curated in the SFARI database (20200730  release, https​
://gene.sfari​.org/datab​ase/gene-scori​ng/). Specifically, 
we use three categories and defined therein as category 
S (syndromic), genes with mutations that are associated 
with a substantial degree of increased risk and linked 
to additional characteristics not required for an ASD 
diagnosis; category 1 (high confidence), genes that have 
been implicated in ASD, typically with at least three de 
novo likely gene-disrupting mutations; and category 2 
(strong candidate), genes with two de novo likely gene-
disrupting mutations or a gene uniquely implicated by a 

genome-wide association study. This combined list was 
used for enrichment analyses, unless we note that TADA 
genes were excluded.

Gene expression datasets
We analyzed the gene expression data from the 
BrainSpan atlas of developing human brain [21]. The 
BrainSpan dataset contains 607 bulk RNA-seq samples 
collected from 26 brain regions of 41 human subjects. 
We focused on the fetal and infant samples with age 
between 8 post-conception weeks (pcw) and 1  year, 
which includes 351 samples collected from 24 subjects. 
The majority of these subjects (16 of 24) are before 
22 pcw. In the deconvolution analysis, we used a fetal 
scRNA-seq dataset [22] that includes 4261 human brain 
cells as a reference.

Cell‑type deconvolution and cell‑type‑specific (CTS) gene 
expression estimation
For cell-type deconvolution, we used a single-cell RNA-
seq dataset of developmental human brain [22] and 
aggregated cells into seven major types using SC3 [23]: 
neuronal progenitor cell (NPC), excitatory neuron (ExN), 
inhibitory neuron (InN), microglia, astrocyte (Astro), 
oligodendrocyte (Oligo), and endothelial (Endo) cells. 
We selected the top 50 marker genes for each cell type 
with SC3 and then constructed a signature matrix by 
averaging the expression of marker genes across cells of 
the same type. We then used Multi-measure INdividual 
Deconvolution (MIND) [24] to estimate subject-level 
CTS gene expression by deconvolving the BrainSpan 
data. As a first step, MIND estimated cell-type fractions 
using nonnegative least squares with the pre-generated 
signature matrix derived from single-cell RNA-seq 
[22]. MIND borrows information from expression data 
across multiple measures, i.e., multiple brain regions 
per subject, and relies on empirical Bayes estimation to 
estimate CTS expression for each subject. It employs a 
computationally efficient EM algorithm to deconvolve all 
genes in the genome.

CTS detecting association with networks (DAWN) analysis
We conducted DAWN [9] analysis for each neuronal 
cell type to integrate information of interaction 
disruption, CTS expression, and TADA score for autism 
risk. The analysis consists of two components: partial 
neighborhood selection to build CTS co-expression 
network based on MIND estimated subject-level CTS 
expression and a hidden Markov random field model 
to combine the estimated network with TADA score 
and disrupted hub identity as a covariate. With an 
FDR threshold of 0.05, we claimed CTS-DAWN genes 
significantly associated with autism risk.

https://gene.sfari.org/database/gene-scoring/
https://gene.sfari.org/database/gene-scoring/
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Gene ontology (GO) enrichment analysis
We performed GO enrichment analyses for CTS-DAWN 
genes directly on the GO home Web site (https​://geneo​
ntolo​gy.org/, powered by PATHER [25]). In each test of 
a particular cell type, we customized the reference gene 
list to have a 5:1 match on the corresponding number of 
CTS-DAWN genes, using the optmatch [26] R package.

CTSu‑TADA gene co‑expression analysis
We analyzed the gene co-expression between CTSu 
genes and two classes of TADA genes—58 GER- and 24 
NC-TADA genes (GER: gene expression regulation, NC: 
neuronal communication, as pre-defined in our recent 
study [5]). A pair of CTSu-TADA genes was considered 
co-expressed if their expression has an absolute Pearson 
correlation coefficient ≥ 0.8 in the corresponding cell 
type. For each CTSu gene, the ratio of co-expressed 
GER- and NC-TADA genes expected at random is 58:24. 
We categorized a particular CTSu gene to be GER/NC 
enriched if it has a higher/lower GER:NC co-expression 
ratio than 58:24. We evaluated the enrichment using an 
exact binomial test and corrected for multiple testing 
using Bonferroni. In the correction, we only considered 
CTSu genes that have at least five co-expressed TADA 
genes, because when the number of co-expressed TADA 
genes is too small, a significance test is not meaningful: 
For the null hypothesis Binomial(x , 58/(58 + 24)), the 
one-sided P value for one co-expressed TADA gene to 
be GER and x− 1 TADA genes to be NC can reach ≤ 0.05 
only when x ≥ 5. Finally, 59 ExN-, 68 InN-, and 1 NCP-
CTSu genes were kept for Bonferroni correction, yielding 
the corrected P values at 2.8 ×10–5, 2.8 ×10–5, and 0.05, 
respectively.

Results
Disruption of protein interaction helps identify important 
de novo missense variants in ASD probands
We previously reported that disruption of protein 
interactions can contribute to ASD [7], and, by utilizing 
our first full-proteome interface mapping [19], we 
developed a computational approach to predict whether 
de novo missense (dnMis)  variants disrupt protein–
protein interaction (PPI) [7]. In brief, this approach 
predicts whether a particular residue is an interface 
residue using Interactome INSIDER. Then, if a dnMis 
variant falls in a predicted interface residue and is scored 
as “probably damaging” by PolyPhen-2, that variant 
was scored as interaction disrupting. Here, to study 
the functional relevance of dnMis variants and their 
disrupted interactions in ASD etiology, we applied our 
predictive approach to 6542 dnMis variants reported 
by a recent whole-exome sequencing (WES) study from 
the ASC [5] (Fig.  1a). We identified 123 unique dnMis 

variants predicted to disrupt the interaction of the 
encoded protein and at least one interacting partner 
in ASD probands and 26 unique variants in siblings 
(Additional file 2: Table 1).

To evaluate the impact of interaction disruption on 
ASD risk, we measured the differential rate of disrupted 
PPI by dnMis variants among ASD probands versus 
unaffected siblings. Of the 2364 probands who carry 
dnMis variants in genes encoding proteins known to 
interact—the interactome network—524 interactions 
were likely disrupted (0.22), as compared to 94 carried 
by 737 siblings (0.13). The rate of disruptions per subject 
was 1.74-fold higher in probands (P = 1.2 ×10–8 by a one-
tailed Z-test, Fig.  1b) and recapitulated our previous 
finding that dnMis variants create risk for ASD, in part, 
by disrupting PPI. Rates of disrupted PPI per variant 
were more similar in ASD probands (524/123 = 4.3) 
and siblings (94/26 = 3.6), 1.18-fold, when compared 
to rates of disruptive variants (123/2922 = 0.042 and 
26/900 = 0.029, yielding 1.46 fold). Thus, predictions of 
which dnMis disrupt interactions could serve as another 
effective approach for identifying damaging dnMis 
variants carried by ASD probands.

In their work, the Autism Sequencing Consortium 
[5] (ASC) used a composite metric called MPC [6] 
(combining Missense badness, PolyPhen-2, and 
Constraint) to separate damaging from benign dnMis 
variants. Specifically, for the ASC analyses, only 
missense variants with MPC ≥ 1 were considered 
sufficiently damaging to be entered into their TADA 
analyses. Thus, we investigated whether our prediction 
of disruptions of the PPI provided novel information 
beyond that provided by MPC. The two assessments 
were likely to be somewhat independent because, out 
of 123 genes in which dnMis variants were predicted 
to disrupt PPI, only 58.5% (72/123) had MPC ≥ 1. 
Considering interaction binding sites for these 123 
and their unique interaction partners, there were 526 
sites and 20.9% of them had MPC ≥ 1 (110/526), with 
a substantial fraction in the rarer and more highly 
deleteriousness category (MPC ≥ 2, Fig.  1c). Next, 
we fitted a logit model to evaluate the added impact 
of prediction of disrupted PPI beyond MPC status. 
For an outcome, we chose whether or not a gene was 
designated as involved in ASD risk, as determined by 
its presence in the list of SFARI genes curated for that 
purpose [27]. We fitted two variables to this outcome, 
whether a dnMis variant falling in a gene had a high 
MPC score (MPC ≥ 1, yes/no) and whether the variant 
disrupted a PPI involving that gene (yes/no). Because 
the SFARI list tends to include ASC-identified ASD 
genes, among others, the predictive value of variants 
with MPC ≥ 1 was of little interest, only whether the 

https://geneontology.org/
https://geneontology.org/
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PPI predictions added predictive value. They did, a 
dnMis variant that was predicted to disrupt a PPI was 
2.07 times more likely to occur in a SFARI gene even 
after accounting for MPC score (z = 2.68, P = 7.5 ×10–

3). We further wondered if the PPI partners of genes 
carrying disrupting dnMis variants were also more 
likely to be SFARI genes. They were, whether MPC was 
taken into account (odds ratio = 1.77, z = 2.62, P = 8.9×
10–3) or not (odds ratio = 2.78, z = 4.98, P = 6.2 ×10–7). 
We next performed this analysis solely using data from 
less constrained genes [28] (with a pLI (probability of 
being loss-of-function intolerant) score < 0.9). For this 
subset and after adjusting for MPC, dnMis variants that 
disrupt PPI were still more likely to involve genes on 
the SFARI list (odds ratio = 3.72, z = 2.81, P = 5.0 ×10–3; 
for the disruption partner, odds ratio = 2.78, z = 2.84, 
P = 4.5 ×10–3). Finally, we asked whether dnMis 
variants that disrupt interactions were relatively more 

common in probands than their unaffected siblings, 
after controlling for MPC: They were (odds ratio = 1.42, 
z = 2.96, P = 3.1 ×10–3.)

These results suggest that our interaction-disruption 
approach could rescue disruptive dnMis variants that 
were not recognized as damaging by MPC. For example, 
we predicted a proband dnMis variant ADAP1 p.G144R 
(with a low MPC score of 1.1) to be disruptive to its 
interaction with KIF13B, with a very high interface 
probability score of 1.0 based on co-crystal structure 
analysis of ADAP1-KIF13B (Fig.  1c). The ADAP1-
KIF13B interaction is known to function in regulating 
neuronal polarity formation and axon specification [29, 
30], defects of which have been linked to ASD etiology 
[31, 32]. It is possible that the ADAP1 p.G144R variant 
contributes to ASD in the proband by disrupting ADAP1-
KIF13B interaction, although the genetic evidence is still 
insufficient regarding this pair of genes.

6,542 de novo missense mutations

4,958
in Proband

1,584
in Sibling

Prediction for
interaction disruption

A full-proteome map 
of interaction interfaces

Protein-protein
interaction network Proband Proband

Female
Proband

Male
Sibling

0.00

0.05

0.10

0.15

0.20

0.25

R
at

e
of

in
te

ra
ct

io
n

di
sr

up
tio

ns
pe

r
dn

M
is

 m
ut

at
io

n 
ca

rr
ie

r

a b

c

1.2×10-8 

416 25050

ADAP1

KIF13B

G144R
Interface prob. = 1.0
MPC = 1.1689

60

Fig. 1  Disruption of protein interaction helps identify important de novo missense (dnMis) variants in ASD probands. a Data source of dnMis 
variants and a schematic diagram showing the proteome-wide mapping of dnMis variants onto protein–protein interaction interfaces for 
predicting interaction disruption. b Interaction disruptions are more common in ASD probands than in unaffected siblings. c Interaction disruption 
predictions rescue disruptive dnMis variants that were not recognized as damaging by MPC. Left: a Venn diagram showing the logical relations 
between genes affected by disruptive dnMis variants predicted by interaction disruption (red) and by MPC (Missense badness, PolyPhen-2, and 
Constraint; solid blue: MPC ≥ 2; dashed blue: MPC ≥ 1). Right: a co-crystal structure of ADAP1-KIF13B (PDB ID: 3MDB) displaying the interface 
location of an ASD proband dnMis variant ADAP1 G144R
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Transcriptome analyses of disrupted interactions implicate 
specific times and cell types in ASD
We next sought to characterize the potential functional 
relevance of disrupting interactions in the context of 
human neurodevelopment across developmental stages 
and cell types. To do so, we examined expression patterns 
of the genes for which dnMis variants disrupted PPI and 
their interaction partners, dubbed “disrupted interaction 
genes,” versus genes for which dnMis variants did not 
interrupt PPI. Here, we leveraged BrainSpan [21], a brain 
transcriptome database that provides bulk-tissue RNA-
seq data from postmortem human brains across 26 brain 
regions and 16 periods of development from fetal to early 
postnatal. We also generated cell-type-specific (CTS) 
transcriptomes for seven cell types by deconvolving these 
BrainSpan bulk-tissue data using the Multi-measure 
INdividual Deconvolution (MIND) [24] algorithm.

Disrupted interaction genes were more highly 
expressed across brain development compared to non-
disrupted interaction genes (P = 3.2 ×10–11 by a two-tailed 
U-test, Fig.  2a; see Additional file  1: Fig.  1 for parallel 
analyses removing known ASD genes). The contrast was 
more pronounced during earlier developmental stages, 
reflecting the reported prenatal expression bias of ASD 
risk genes [5, 33]. To further quantify this pattern, we 
applied a t-statistic that assessed the relative prenatal 
versus postnatal gene expression in developing brain 
(developed by the recent ASC study [5]). As expected, 
we observed a significant shift of disrupted interaction 
genes toward prenatal expression bias (smaller t-statistic 
than the non-disrupted interaction genes, P = 2.6 ×
10–5 by a two-tailed U-test, Fig.  2b). Moreover, the 
BrainVar study [34] recently categorized genes based on 
their expression trajectories into “falling” (decreasing 
expression with age), “rising” (increasing expression with 
age), and “flat.” Consistent with the t-statistic results, 
disrupted interaction genes were more likely to have a 
falling expression trajectory (P = 2.0 ×10–4 by a two-tailed 
Fisher’s exact test, Fig.  2c). Of note, when we repeated 
all of these analyses for data from unaffected siblings, 
no significant test statistics were observed (Fig.  2d–f), 
reinforcing the functional significance of disrupted 
interaction genes we identified in ASD probands.

Another dimension we pursed to characterize 
interaction disruptions was at the cell-type level. This 
dimension can be particularly informative, given the vast 
cellular and functional diversity of neuronal and non-
neuronal cell populations in brain tissue. Using MIND 
[24], we estimated subject-level CTS gene expression 
from the BrainSpan bulk data (Fig.  2g) for seven cell 
types: neuronal progenitor cell (NPC), excitatory neuron 
(ExN), inhibitory neuron (InN), microglia, astrocyte 
(Astro), oligodendrocyte (Oligo), and endothelial (Endo) 

cells. Comparing CTS expression of disrupted versus 
non-disrupted interaction genes, as identified by analysis 
of ASD probands, we found that disrupted interaction 
genes were expressed at a higher level across most cell 
types, in comparison with non-disrupted interaction 
genes. When the same analysis was applied to genes 
carrying dnMis variants found in unaffected siblings, 
this difference disappeared (Fig.  2h, two-tailed U-test, 
Bonferroni correction for seven tests). It was also evident 
that the neuronal cell types—NPC, ExN, and InN—
showed more significant differences than any of the 
non-neuronal cell types, suggesting that the neuronal 
lineage could be more vulnerable than other cell types to 
interaction disruptions.

A disrupted ASD network identifies novel ASD‑associated 
proteins and protein interactions
A unique advantage of predicting which variants disrupt 
PPI resides in its ability to link different dnMis variants 
together by connecting these disrupted interactions. 
Toward this end, we created a “disrupted ASD network,” 
using the 507 disrupted interactions identified in ASD 
probands as PPI network edges (Fig.  3a, Additional 
file  3: Table  2). (We previously noted there were 524 
interactions disrupted in probands, and here, we identify 
only unique protein pairs, reducing 524–507.) Similarly, 
a non-disrupted network was created using 18,407 non-
disrupted interactions (Fig.  3a). Using these networks, 
we interrogated how 511 previously implicated ASD 
proteins were distributed (union of SFARI database [27], 
20200730  release, and new genes recently implicated in 
risk for ASD [5]). Overall, there was a twofold enrichment 
of ASD proteins in the disrupted versus the non-
disrupted network (44/526 versus 314/7346, P = 1.4 ×10–5 
by a two-tailed Z-test). Interestingly, when we ranked 
the network proteins by their number of interactions or 
degree (low to high), we found an increasing enrichment 
at the higher degree (3.8-, 4.1-, 4.8-fold enrichment 
from the first to third quartile, respectively, Fig.  3b). 
This suggests that ASD proteins tend to act as hubs in 
our disrupted network. For this reason, we prioritized 
34 hub proteins from the disrupted network, cutting at 
the highest degree quartile (≥ 5), as our candidate ASD 
proteins.

Of the 34 hub proteins, 12 fell in the set of 511 “ASD 
proteins” and the remaining 22 hub proteins did not. 
Of these 22 hub proteins, 14 were directedly connected 
to proteins falling in the 511 ASD protein list and eight 
of these 14 were encoded by genes that are extremely 
intolerant of loss-of-function variants (pLI [28] ≥ 0.9, 
Fig.  3c). DDX5 topped the list as having the highest 
network degree, with a dnMis variant DDX5 p.D255H 
disrupting 20 interactions. The majority of these 
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Fig. 2  Transcriptome analyses of disrupted interactions implicate specific times and cell types in ASD. a–c Disrupted interaction genes identified in 
ASD probands a are highly expressed in brain, b exhibit prenatal expression bias, and c tend to have a falling expression trajectory. d–f, Disrupted 
interaction genes found in unaffected siblings do not present the above features. g MIND algorithm to estimate subject-level CTS expression 
from BrainSpan bulk RNA-seq data. h Disrupted interaction genes are most highly expressed in neuronal cell types. The heatmap shows the 
negative log10(P value) for comparing expression levels of disrupted versus non-disrupted interaction genes in seven cell types. Cell types that 
are significant after Bonferroni correction are noted with their negative log10(P value) written in white. pcw post-conception weeks, mos months, 
CTS cell-type-specific, NPC neuronal progenitor cell, ExN excitatory neuron, InN inhibitory neuron, Astro astrocyte, Oligo oligodendrocyte, Endo 
endothelial
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disrupted interactors (17/20), as well as DDX5 itself, 
possessed RNA binding activity, and they were largely 
involved in mRNA splicing and transport (Fig.  3d). 
In particular, DDX5 and its interactor hnRNPA0 
(heterogeneous nuclear ribonucleoprotein A0; gene 
hnRNPA0) are part of the FMRP-kinesin transport RNP 
granule [35], which travels along neuron dendrites and 
regulates the localized translation of mRNAs, some of 
which encode ASD proteins [36] (Fig.  3d). Additionally, 
besides hnRNPA0, three other hnRNPs are also among 
the DDX5 p.D255H disrupted interactors, including 
a previously implicated ASD protein hnRNPH2 [27]. 
Moreover, three interactors—RNA-binding proteins 
hnRNPK, DHX15, and RBM4—act as connectors linking 
DDX5 to another hub protein PABPC1 (p.K138E) in the 
disrupted network (Fig.  3d). Interestingly, PABPC1 is 
also a component of FMRP-associated RNP complex 
[37]. Previous experiments have suggested an indirect 

RNA-mediated interaction between DDX5 and PABPC1 
[38], and in  vivo experiments have further shown that 
knockout mice with DDX5 and PABPC1 disassociated 
from polyribosomes displayed ASD-relevant behaviors 
[39]. Collectively, together with published evidence, our 
disrupted ASD network nominates DDX5 and PABPC1 
as novel ASD proteins.

Integrating hub, CTS, and genetic information to implicate 
new genes in ASD risk
The ASC’s recent analyses of the same WES data 
have implicated 102 ASD genes that bear an excess of 
putatively damaging variants [5]. The evidence for genetic 
association of each gene was quantified by a TADA 
score, a Bayesian association testing metric that, in a 
recent instantiation, incorporated pLI score for protein-
truncating variant (PTV) and MPC score for missense 
variant [5, 40]. Our as well as others’ transcriptome 

a b

c d

Fig. 3  A disrupted ASD network identifies novel ASD-associated proteins and protein interactions. a Construction of disrupted and non-disrupted 
networks. b The disrupted network is enriched for previously implicated ASD proteins. Enrichment was assessed at four levels (from left to right): all 
proteins, proteins with a network degree higher than the first, the second, and the third quartile of corresponding network degree distributions. c 
Prioritizing disrupted hubs based on their degrees and connections to previously implicated ASD proteins. A network view of the 34 fourth-quartile 
hubs in the disrupted network is shown on the left (only hub genes are labeled). Numbers shown in the parenthesis indicate network degrees 
of hubs in the disrupted ASD network. d Prioritized proteins DDX5 and PABPC1 may function in the transport and localized translation of mRNAs 
encoding ASD proteins. Upper: a sub-network comprising proteins connected to DDX5 and PABPC1 in the disrupted network (red denotes 
previously implicated ASD protein). Lower: a schematic diagram illustrating the proposed roles of DDX5, PABPC1, and their interactors. RNP, 
ribonucleoprotein
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analyses [33, 41] have suggested that functional 
interpretation of ASD genes requires knowledge not 
only of the genetic changes on these genes but also of 
the neurodevelopmental context in which these changes 
function. Thus, toward enhancing the set of genes 
implicated in ASD and their interpretation, we integrated 
our new hub and CTS information with TADA into a 
unified framework detecting association with networks 
(DAWN) [8, 9] to implicate new genes for ASD in a CTS 
context.

Our DAWN framework casts the ensemble data as 
a hidden Markov random field, in which the graph 
structure is determined by CTS gene co-expression, and 
it combines these interrelationships with node-specific 
observations, namely hub identity and TADA score, to 
detect correlated genes that reinforce ASD association 
signal. We chose the three neuronal cell types (NPC, 
ExN, and InN) as the relevant CTS context based on 
our previous finding that the neuronal lineage had the 
highest susceptibility to interaction disruptions (Fig. 2h); 
the ASC reached similar conclusions in their recent 
work [5]. We further confirmed and expanded on this by 
analyzing CTS expression and co-expression of hubs and 
TADA genes. Comparing CTS expression of disrupted 
versus non-disrupted hub genes revealed significantly 
higher expression of disrupted hubs in all three neuronal 
cell types, but in none of the others (NPC: P = 6.2 ×10–3, 
ExN: P = 1.7 ×10–4, InN: P = 5.6 ×10–4; Fig.  4a). In ExN 
and InN, moreover, disrupted hub and TADA genes were 
found more closely connected to each other via CTS 
co-expression (significantly denser than expected; ExN: 
P = 1.0 ×10–5, InN: P = 5.0 ×10–5; Fig.  4b). These results 
reinforced that neuronal cell types, especially ExN and 
InN, were likely to be the major cell types preferentially 
affected in ASD. In this regard, we performed three 
separate DAWN analyses for ExN, InN, and NPC, by 
fitting in the corresponding CTS co-expression network 
(Fig. 4c).

With an FDR ≤ 0.05, we identified 421, 413, and 281 
significant genes as candidate CTS ASD genes for ExN, 
InN, and NPC, respectively (denoted as ExN/InN/NPC-
DAWN or together as CTS-DAWN genes; Additional 
file 4: Table 3). Compared to other nonsignificant genes, 
and after removing the TADA genes [5], the remaining 
CTS-DAWN genes were significantly enriched for 
previously implicated SFARI ASD genes (Fig.  4c and 
Additional file  1: Fig.  2–3), lending support to the 
validity of our CTS-DAWN framework. Our framework 
implicated a substantial number of novel ASD genes. In 
each cell type, ~ 60% of CTS-DAWN genes were novel 
(not in previous TADA or SFARI gene list; Additional 
file 4: Table 3).

To validate the CTS-DAWN genes further and 
evaluate their functional significance, we performed a 
set of analyses for features known to be indicative of 
ASD genes, although using only the novel CTS-DAWN 
genes. First, we interrogated whether disruption to these 
genes was likely to have a severe impact on evolutionary 
fitness. Using the pLI [28] and loss-of-function observed/
expected upper bound fraction (LOEUF) [42] metrics, 
we found that novel CTS-DAWN genes, on average, 
had a significantly higher pLI and correspondingly 
lower LOEUF scores than other genes (Fig.  4d, e and 
Additional file  1: Fig.  2–3). This reflected a strong 
selection against de novo variants on CTS-DAWN genes, 
such that a single disruptive variant could be enough to 
render a phenotypic effect (“haploinsufficient”). Next, 
we wondered if such variants had detectable effects on 
ASD-relevant phenotypes. To test this, we collected 
and compared several ASD diagnostic features between 
probands carrying variants in these genes versus 
probands carrying variants in genes not in DAWN or 
SFARI/TADA genes. We found that probands who 
carry a variant on novel DAWN genes, be it a PTV or a 
missense variant, exhibited reduced intelligence (low 
IQ score, Fig.  4f ), impaired social ability (high social 
responsiveness scale, Fig. 4g), and delayed age of walking 
(Fig. 4h; Additional file 1: Fig. 2–3 and Additional file 5: 
Table  4). In sum, these analyses show that the CTS-
DAWN genes share key features of SFARI/TADA ASD 
genes; namely, they are loss-of-function intolerant 
and they influence key ASD-associated phenotypes. 
It also suggests there is value of incorporating CTS 
co-expression information into DAWN analyses to 
discover novel ASD genes, which may be undetected by 
other methodologies using genetic association scores 
alone.

We next sought clues for the biological processes CTS-
DAWN genes affect. Gene ontology (GO) enrichment 
analyses identified predominant signals from processes 
of neuronal morphogenesis (e.g., axonogenesis, neuron 
projection morphogenesis) and neuronal communication 
(synaptic transmission/signaling, synapse organization) 
over the three cell types (Fig.  4i, Additional file  6: 
Table  5). These processes are inter-related and have 
been implicated in ASD and associated syndromes 
[43–46]. NPC-DAWN genes showed a pronounced 
enrichment for “limbic system development” (Fig.  4i), 
which is intriguing because the limbic system is critical 
for emotion, behavior, memory, and learning [47], and 
abnormalities of the limbic system have been frequently 
associated with ASD [48], especially in the hippocampus 
and the amygdala. Moreover, it is interesting that this 
enrichment was only seen in NPC-DAWN genes, 
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Fig. 4  Integrating hub, CTS, and genetic information to implicate new genes in ASD risk. a, b Disrupted hubs are highly a expressed and b 
co-expressed with ASD genes in neuronal cell types. Cell types that are significant after Bonferroni correction are noted with their P values. c A 
unified framework DAWN integrating CTS co-expression, hub, and TADA to identify ASD genes in a CTS context. Three CTS-DAWN analyses were 
performed for three neuronal cell types. For presentation purposes, c–h present results of ExN-DAWN, and results of InN- and NPC-DAWN are 
provided in Additional file 1: Figs. 2 and 3, respectively. d, e, ExN-DAWN genes versus other genes evaluated on two loss-of-function tolerance 
metrics: pLI (d) and LOEUF (e). T/S stands for TADA/SFARI genes also identified by DAWN, Novel for DAWN genes not found in the T/S list, Other 
genes for expressed genes not found in the T/S or DAWN lists. f–h, ASD probands carrying a de novo protein-truncating or missense variant on 
ExN-DAWN genes exhibit severe ASD symptoms, with f reduced intelligence, g impaired social ability, and h delayed age of walking. i CTS-DAWN 
genes are enriched in neurodevelopmental processes. The top 10 enriched GO terms of each cell type are shown (FDR ≤ 0.05, ranked by 
fold-enrichment). CTS cell-type-specific, ExN excitatory neurons, InN inhibitory neurons, NPC neural progenitor cells, TADA transmission and de 
novo association, DAWN detecting association with networks, pLI probability of being loss-of-function intolerant, LOEUF loss-of-function observed/
expected upper bound fraction, PTV protein-truncating variant
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suggesting a very early developmental vulnerability for 
the limbic system.

CTS co‑expression drives the discovery of novel CTS‑DAWN 
genes
To dissect how CTS information has contributed to CTS-
DAWN discoveries, we compared the results across the 
three CTS-DAWN analyses. This produced four subsets 
of particular interest: three sets of genes that were unique 
to each of the three cell types (CTS-unique, abbreviated 
as “CTSu”) and one set of genes that were shared by all 
three cell types (“All3”; Fig. 5a). Comparing these four sets 
of genes with previous TADA genes, we found minimum 
overlap between the three sets of CTSu genes and TADA 
genes, whereas over half of the All3 genes overlapped 
with TADA genes (Fig.  5b). This sharp contrast can be 
attributed to and explained by the architecture of our 
CTS-DAWN framework. As the TADA score was an 
invariant input to all three CTS-DAWN analyses, genes 
with very high TADA scores were likely to be picked by 
all three. On the other hand, genes with relatively low 
TADA scores had to borrow strength from CTS gene 
co-expression. Technically, from the view of DAWN, 
a low-TADA-score gene will be promoted if it has a 
strong co-expression correlation with one or more high-
TADA-score genes. Thus, we reason that the discovery 
of non-TADA CTSu genes was largely driven by their 
high co-expression with TADA (or high-TADA-score) 
genes. Interestingly, when we repeated the comparison 
using an independent set of ASD genes (SFARI excluding 
TADA), we found CTSu genes showed higher percentage 
representation than that of All3 genes (Fig. 5c). This, in 
part, follows from our earlier result, which shows DAWN 

genes tend to be over-represented in the SFARI gene list, 
even after excluding TADA genes (Fig. 4c).

To provide more biological meaning for new CTSu 
genes, we built on a recent ASC analysis [5], which 
classified TADA genes into two functional classes: 
58 “gene expression regulation (GER)” genes and 
24 “neuronal communication (NC)” genes. We next 
identified, for each CTSu gene, what specific TADA 
genes were co-expressed with it. We then assessed, for 
each CTSu gene, its tendency to function as a GER or NC 
by comparing the ratio of its numbers of co-expressed 
GER versus NC genes to the expected ratio (Fig.  5d). 
Our analyses identified similar proportions of GER- 
and NC-enriched genes (43% and 57%, respectively; 
Additional file 7: Table 6), although the NC axis yielded 
stronger statistical signals (Fig. 5d).

Along the NC-enriched axis, six ExN-CTSu (AGAP2, 
SYNJ1, MAP2, MYO16, JAKMIP1, and FBLN1) and 
four InN-CTSu (RAB3GAP1, NDRG3, SCAMP2, and 
RIMBP2) genes appeared significant after correction 
for multiple testing (Fig. 5d). Remarkably, the top genes 
AGAP2 (in ExN) and RAB3GAP1 (in InN) showed 
exclusive NC co-expression (9/9 and 7/7, respectively), 
and they were connected to each other through three 
common NC-TADA genes, thereby forming a local 
NC sub-network (Fig.  5e). The network was further 
condensed by an interaction-disruption event that linked 
one of the NC-TADA genes NGL1 (with a dnMis variant 
p.R156Q) to an additional CTS-DAWN gene NTNG1 
(Fig.  5e). This clustering of different association signals 
from genetic association scores and their transcriptomic/
interactomic interrelationships reinforced a convergence 
of CTS risk genes in NC. Mapping this network of 
genes onto neuronal structures, we found, intriguingly, 

Fig. 5  CTS co-expression drives the discovery of novel CTS-DAWN genes. a CTS-DAWN identifies genes that are unique to a particular cell type. b 
Overlaps between CTS-DAWN genes and TADA genes. c Overlaps between CTS-DAWN genes and SFARI genes. TADA genes were excluded from 
the analysis. Dashed line indicates the fraction of nonsignificant genes in DAWN analysis that overlap with SFARI genes. d CTSu-DAWN genes tend 
to be co-expressed with TADA genes involved in neuronal communication. Upper: A schematic diagram illustrating the co-expression analysis 
of CTSu-DAWN genes and TADA genes. Lower: A volcano plot showing the degree to which each CTSu-DAWN gene is GER enriched (left x-axis) 
or NC enriched (right x-axis), against corresponding statistical significance on y-axis (negative log10(P value)). Horizontal dashed lines indicate 
the threshold for significance after Bonferroni correction; names of genes that passed the correction are shown. e A condensed NC sub-network 
formed by inter-connected CTSu-DAWN genes and TADA genes. A co-crystal structure of NGL1-NTNG1 (PDB ID: 3ZYJ) displaying the interface 
location of an ASD proband dnMis variant NGL1 p.R156Q is shown below. f A schematic diagram showing the distribution and function of NC 
sub-network genes on neuron structures. The 16 NC sub-network genes function in a range of components of an NC circuit: (1) SCN2A, (2) KCNQ3, 
and (3) KCNMA1 encode voltage-gated ion channels; (4) RAB3GAP1 and (5) STXBP1 assist neurotransmitter exocytosis, while (6) SLC6A1 promotes 
restoration; (7) GRIA2 and (8) GRIN2B encode glutamate receptors, and (9) GABRB2 encodes a GABAA receptor; in receptor-mediated pathways, 
(10) SYNGAP1 suppresses NMDAR-RAS signaling and (11) AGAP2 transmits signals from mGlu receptor to PI3K; in postsynaptic density (PSD), 
(12) SHANK2, (13) SHANK3, and (14) ANK2 connect membrane receptors to the actin cytoskeleton; (15–16) the NTNG1-NGL1 interaction forms a 
trans-synaptic bridge. Abbreviations: CTS, cell-type-specific; DAWN, detecting association with networks; CTS-DAWN genes, genes identified by 
DAWN in specific cell types; ExN, excitatory neurons; InN, inhibitory neurons; NPC, neural progenitor cells; CTSu, cell-type-specific unique; ExN/InN/
NPC-CTSu: genes identified uniquely in one cell type; All3, genes identified in all three cell types; TADA, transmission and de novo association; GER, 
gene expression regulation; NC, neuronal communication; NC-TADA, genes implicated by TADA and affect neuronal communication

(See figure on next page.)
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they cover many essential components of an NC circuit 
(Fig.  5f ). The genes affect action potential initiation 
and propagation (e.g., genes encoding voltage-gated 
ion channels: SCNA2, KCNQ3, and KCNMA1); 
neurotransmitter release/recycle at the pre-synapse (e.g., 
genes promoting neurotransmitter secretion [49, 50] and 
restoration [51] [RAB3GAP1, STXBP1, and SLC6A1]); 
neurotransmitter receptor binding at the post-synapse, 
from ionotropic receptors (e.g., glutamate receptors 
encoded by GRIA2 [NMDAR] and GRIN2B [AMPAR] 
and GABAA receptor encoded by GABRB2); ionotropic/
metabotropic receptor-mediated intracellular signaling 
(e.g., SYNGAP1 in NMDAR-RAS [52]; AGAP2 in 
mGluR-PI3K [53]); and postsynaptic density (PSD) that 
connects membrane receptors to the actin cytoskeleton 
[4] (e.g., the Shank family [54]: SHANK2/3; the ankyrin 
family [55]: ANK2). Furthermore, the protein interaction 
between the presynaptic NTNG1 and the postsynaptic 
NGL1 forms a trans-synaptic bridge that mediates initial 
contact between early neuronal synapses [56, 57], which 
lays the foundation for NC. Collectively, we suggest that 
NC is likely to be a converging point for many of our 
CTS risk genes to function and that alteration of their 
gene expression and/or protein structure could have a 
neurodevelopmental and neuropsychiatric impact.

Discussion
Our results show that de novo variants in ASD subjects 
alter nucleotides encoding protein-interaction interfaces 
more than expected by chance, often disrupting 
interfaces for multiple proteins, and the proteins involved 
in these disrupted interactions are more likely to be 
encoded by previously implicated ASD genes. Both the 
proteins encoded by the genes hit with dnMis variants 
and their complementary interactor proteins show this 
enrichment. These observations pave the way for a rich 
set of analyses involving gene sets identified by disrupted 
PPI, their gene expression during fetal to early postnatal 
development and within general cell types of brain 
tissue to determine how they relate to risk for ASD. PPI 
networks also hold key information in this regard, and 
guilt by association [58] in all these settings can implicate 
additional genes/proteins in risk for ASD.

This wide spectrum of analyses and results provides the 
following insights into ASD genetics and neurobiology: 
Genes encoding disrupted protein interactions in ASD 
subjects tend to be expressed earlier in development and 
in neuronal lineages of both excitatory and inhibitory 
neurons, in agreement with an earlier ASC study [5]. A 
PPI network built using dnMis variants disrupting hub 
protein interactions in ASD subjects shows significant 
enrichment for ASD proteins. By integrating hub 
information, gene expression for three neuronal cell 

types—excitatory, inhibitory, and neural progenitor 
cells—and genetic association information using DAWN 
[8, 9], we implicate three substantial sets of genes in risk 
for ASD (FDR ≤ 0.05), one for each cell type. Roughly, 
60% of the genes in all three sets have not been implicated 
in ASD previously; yet, all sets and novel genes therein 
have characteristics of genuine ASD genes [1–3, 5]. Gene 
set analyses show all three sets are enriched for functions 
underlying neuronal morphogenesis and neuronal 
communication. Enrichment for these broad functions is 
a common finding for ASD genetics [1, 5, 43, 59]. Gene 
set analysis of DAWN genes from neural progenitor 
cells, however, also highlights strong enrichment for 
development of the limbic system.

While the genes identified by the DAWN analyses do 
show features of ASD-implicated genes, the evidence is 
not foolproof. Notably, the constraint scores for the novel 
DAWN genes fall between that of the DAWN genes also 
contained in the TADA/SFARI list and other genes not 
found in either source (Fig.  4d). If all genes involved in 
ASD risk were exactly of the nature of those found in the 
recent ASC manuscript [5], then a substantial fraction 
of the novel DAWN genes could be false positives. On 
the other hand, they could all affect risk, even though 
they are, on average, less constrained, because DAWN 
does not make the same assumptions about the genetic 
architecture of ASD as does TADA. TADA assumes a 
dominant model and works well for haploinsufficient 
risk genes. It cannot detect other kinds of ASD risk 
genes: those that are often lethal when mutated, are 
haplosufficient, or act in a sub-additive fashion, perhaps 
because of redundant mechanisms for development. 
In contrast, DAWN only assumes that ASD risk genes 
work together in a network, presumably for a common 
developmental purpose, and that a portion of those risk 
genes carry genetic association signal. In our analyses, 
that signal is generated by TADA-based association. 
Thus, DAWN targets a larger set of ASD risk genes than 
TADA.

Limitations
Our analyses indicate that CTS gene co-expression 
and PPI networks can provide valuable insight into 
neurobiology relevant for ASD and they can implicate 
additional genes in risk for ASD. We recognize, however, 
that the guilt-by-association principle such analyses rely 
on is imperfect [60], as is the human interactome on 
which protein interactions and PPI networks are derived. 
The fact that implicated DAWN ASD genes have the 
hallmarks of validated ASD genes is strong evidence that 
many of the genes in these sets are real. The fact that they 
are enriched for neuronal functions previously implied in 
ASD is further evidence for their validity.
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Conclusions
Sample size for whole-exome studies of various 
diseases and disorders is constantly increasing. In 
most settings, however, de novo missense variants 
contribute only modestly to gene discovery and to the 
biology underlying the disorder [5]. Ideally, as sample 
size increases, so does our understanding of which 
missense variants seriously damage protein function 
and increase risk for disorders. Here, we show that 
dnMis variants that disrupt protein interactions are 
one dimension by which such variants affect risk for 
ASD. In our previous work on far smaller samples, 
we showed this is a general phenomenon across many 
disorders [7].The importance of protein interactions 
and missense variation that disrupts them goes far 
beyond gene discovery, as we show here. Incorporating 
PPI and CTS co-expression networks promotes the 
identification and interpretation of risk genes under 
specific cell-type contexts. Disruptive missense variants 
shed light on genotype–phenotype relationships and 
gene sub-networks affecting risk. For ASD, we believe 
such sub-networks have the potential to identify key 
circuits involved in risk.
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