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Abstract

Genetic factors contribute to the development of autism spectrum disorder (ASD), and although non-protein-
coding regions of the genome are being increasingly implicated in ASD, the functional consequences of these
variants remain largely uncharacterized. Induced pluripotent stem cells (iPSCs) enable the production of
personalized neurons that are genetically matched to people with ASD and can therefore be used to directly test
the effects of genomic variation on neuronal gene expression, synapse function, and connectivity. The combined
use of human pluripotent stem cells with genome editing to introduce or correct specific variants has proved to be
a powerful approach for exploring the functional consequences of ASD-associated variants in protein-coding genes
and, more recently, long non-coding RNAs (lncRNAs). Here, we review recent studies that implicate lncRNAs, other
non-coding mutations, and regulatory variants in ASD susceptibility. We also discuss experimental design
considerations for using iPSCs and genome editing to study the role of the non-protein-coding genome in ASD.

Overview
Autism spectrum disorder (ASD) is a neurodevelopmen-
tal disorder with complex genetic underpinnings, and
our current understanding of specific genetic risk for
ASD comes from the studies of rare mutations affecting
DNA that encodes protein-coding exons and genes (for
a comprehensive review of the neurobiology and genet-
ics of ASD, see [1]). However, such protein-coding exons
represent less than 2% of the human genome, and
genome-wide association studies suggest that many
ASD-associated variants map to intragenic and intronic
regions, as well as non-protein-coding intervals [2]. The
recent application of whole-genome sequencing (WGS),
which captures the vast majority of chromosomal DNA,
has led to the identification of increasing numbers of

ASD-associated variants that affect RNA splicing [3–6],
long non-coding RNAs (lncRNAs) [7], and transcrip-
tional regulatory elements [4–6, 8–24] (Table 1). How-
ever, the functional consequences of non-coding variants
are difficult to predict [25] and validate.
Although genetically modified rodents can be invalu-

able model systems to explore functions of ASD-
associated protein-coding genes [26], human regulatory
elements and non-coding RNAs are not always con-
served in mice or rats. Notable interspecies differences
have been identified across vertebrates for mechanisms
governing the expression of conserved protein-coding
genes [27]. Some human regulatory regions are newly
evolved or undergo accelerated evolution [28, 29]. Fur-
thermore, among the thousands of known human
lncRNAs, nearly one third arose specifically in primate
lineages [30]. Together, these observations suggest that
human neurons are a more relevant model system for
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exploring, at least initially, the functions of ASD-
associated non-coding variants.
Induced pluripotent stem cells (iPSCs) can produce in-

exhaustible supplies of personalized neurons that are
genetically matched to individuals with ASD or un-
affected individuals [31]. CRISPR genome editing has
also facilitated the generation of customized neurons
with specific variants [32, 33]. iPSC-derived neurons
have been used to model ASD, and these studies have
consistently implicated altered synaptic function in the
underlying pathophysiology of ASD, although the spe-
cific mechanisms of synaptic dysfunction vary between
models [20, 32, 34–44] (Table 2). Compared to protein-
coding genes, experimental perturbation of regulatory el-
ements and non-coding RNAs are more technically

difficult, and phenotypic effects may be challenging to
detect or interpret [45–47]. We review recent insights
into the role of non-coding and regulatory genetic vari-
ants in ASD, and we discuss future directions for using
human iPSCs and genome editing to explore their func-
tional consequences (Fig. 1).

Gene regulatory factors in ASD
ASD is now increasingly considered a disorder of synap-
tic connectivity, and the growing list of ASD-relevant
genes has largely converged on two biological processes:
synaptic transmission and regulation of gene expression
[1, 48, 49]. Known ASD genes involved in gene regula-
tory processes include transcription factors, RNA-
binding proteins, and chromatin regulatory factors,

Table 1 Examples of putative non-coding regulatory variants in ASD

Element/gene Evidence Reference

A. Transcriptional regulatory elements

16q21 near CDH8 (×2)
3q24 near C3orf58 (×2)

Rare inherited CNVs affecting non-genic intervals near ASD-associated genes [13]

5′ UTR of MBD5 disruptions of 5′-UTR cause haploinsufficiency of this ASD-associated gene [14–16]

EFR3A promoter Predicted loss of transcription factor binding (×1) [4]

Cis regulatory elements of CTN4,
LEO1, RAF1, MEST

ASD with recurrent variants in intolerant genes paternally inherited deletions
of the LEO1 promoter (×3)

[10]

NEUROG1
DLGAP2
HES1
FEZF1

Network differential enrichment analysis: significant neighborhood excess of
non-coding variants in Simons Simplex Collection probands and nearby
non-coding variants had significant differential effects on activator activities

[6]

regulatory APBB1 TADA-A (transmission and de novo association—annotation) analysis:
single-nucleotide variants in a regulatory region (×3 (2 conserved))

[2]

near ARID1B, SCN2A,
NR3C2, PRKCA, DSCAM

Disruptive mutations in putative regulatory regions (DNase I hypersensitivity) [8]

NR3C2 promoter
DLG2 promoter

Disrupting deletion overlaps functional non-coding regulatory region in the
human brain (×1)
Same 2.5-kb deletion in the DLG2 promoter (×3) functional, non-coding
regulatory region in developing the human brain

[11]

B. Post-transcriptional regulatory elements

miR-873-5p embedded in LINGO2 intron Rare seed mutation [17]

CTNND2 and PTEN
ALDH5A1, GLI2, GRIN1, KCNH3,
LAMA2, and NISCH

Splicing/misregulated in genes with neurological phenotypes, increased in ASD [3]

SMEK1 De novo non-coding mutation lying outside of a canonical splice site predicted
to disrupt splicing

[6]

NRXN1, TANC2, PNPLA7 Splicing single-nucleotide variants [2]

C. Long non-coding RNAs

AK127244 (2p16.3) Deletions directly disrupting exonic sequence in ASD (×3)
rare inherited CNVs (×5)

[13, 18, 19]

PTCHD1-AS Deletions impacting exons of this gene in multiple males with ASD [18, 20, 21]

MSNP1-AS (5p14.1) Within ASD GWAS peak, increased expression in the ASD cortex, influences moesin
protein levels

[22]

LINC00689 (7q36.3) LINC00693 (3p24.1) Differentially expressed: upregulated in the ASD cortex [23]

lnc-NR2F1 (5q15) Shown to regulate autism risk genes and promote maturation of mouse stem
cell-derived neurons

[24]
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many of which regulate expression of other autism risk
genes, and additional regulators of synapse function [1].
ASD-associated chromatin regulators functionally con-
verged upon methylation of H3K4 [50], which is import-
ant for the functional demarcation of promoters and
enhancers [51]. Recurrent disruption of writers, erasers,
and readers of H3K4 methylation in ASD [50] has led to
speculation that ASD may be an “enhanceropathy” or a
disorder caused by misregulated gene expression [52].
Neuronal gene expression must be finely tuned during
development and in response to synaptic activity, so
genetic variants that disrupt or alter regulatory elements
could have a profound impact on the formation and re-
finement of synaptic networks [48, 53].

Non-coding regulatory variants in ASD
Non-coding elements were initially implicated in ASD
by analyses of copy number variation (CNV), which
identified 15 intergenic loci that were sites of recurrent
genomic rearrangement found in ASD subjects [13].
Most of these variants disrupted putative regulatory ele-
ments or non-coding RNAs, and several mapped near
protein-coding genes that were associated with ASD
(CHD8, DIPK2A/C3orf58, and NRXN1) or neuronal
function (ASTN2, EPH5A, SEMA3C, UNC5D). It was

initially unknown whether non-coding variants would
play a substantial role in ASD, but subsequent WGS
studies suggest that approximately 5% of ASD cases may
be accounted for by non-coding variants [54]. Also, the
determination that non-coding variants largely converge
on the same functional processes as ASD-associated
protein-coding genes strongly supported the potential
for non-coding variants to play causal roles in ASD de-
velopment [4, 6]. Furthermore, the IQ of people with
ASD inversely correlates with the burden of specific
RNA regulatory variants, suggesting that non-coding
variants may provide novel insights into the clinical het-
erogeneity of ASD [6]. Relative to exonic variants, it is
difficult to predict the functional consequences of non-
coding variants [25], although computational tools con-
tinue to evolve for prioritization of such variants [2, 4, 6,
12, 55–57]. Several approaches used epigenetic informa-
tion (e.g., histone marks, chromatin accessibility, and
transcription factor binding) from different cell types to
computationally predict tissue-specific expression effects
of non-coding variants [6, 56, 58]. Interestingly, when
tested against known expression quantitative trait loci
from the Genotype-Tissue Expression (GTEx) project,
one such deep learning approach correctly predicted the
directions of expression changes for hundreds of strong

Fig. 1 Graphical summary of how hPSC-derived neurons can be used to model the functional consequences of ASD-associated non-coding
variants. WGS will identify de novo variants in people with ASD (*), which will then be mapped to specific locations in the genome. Genomic loci
are annotated as functional elements based on transcriptomics, chromatin state analyses, and computation predictions. ASD-associated variants
can be modeled using personalized iPSCs from people with ASD or by genome editing to introduce or repair ASD-associated variants. hPSC-
derived neurons are then made by directed differentiation (via a NPC stage) or direct conversion, and functional consequences of non-coding
variants are determined by analyzing gene expression and connectivity
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effect variants [58]. WGS studies implicated cis-regula-
tory elements like promoters, enhancers, and RNA regu-
latory sequences in ASD, and many of the genes that are
regulated by these elements have been functionally or
genetically linked to ASD (Table 1). Next, we highlight
recent findings that illustrate the importance of non-
coding variants in gene regulation and ASD.

Transcriptional regulatory elements in ASD
WGS studies have revealed extensive evidence for ASD-
associated non-coding variants in transcriptional regula-
tory elements like promoters and enhancers, which are
functionally annotated based on transcriptomics data
and chromatin state analyses [59–62]. WGS studies re-
ported that non-coding variants were enriched in con-
served enhancers [4] that are accessible in the fetal brain
[8] or predicted to regulate ASD genes [5, 8, 12]. WGS
has also detected de novo ASD-associated variants in
distal promoters (750–2000 bp upstream of transcription
start sites), which had a significant association with tran-
scription factor binding sites [9]. Rare recurrent variants
were found disrupting predicted promoters for DLG2
and NR3C2, which have both been implicated in brain
function or neurodevelopment [11].
Several ASD-associated variants of transcriptional

regulatory elements have been shown to directly affect
gene expression. For example, one ASD-associated single
nucleotide variant mapped to a predicted transcription
factor binding site and drove aberrant expression of a re-
porter gene in the developing mouse forebrain, where
the reference sequence was not active [5]. Reporter as-
says were also used to test transcriptional regulatory
properties of variants near known ASD risk genes. Spe-
cifically, when 59 prioritized variants from ASD pro-
bands were compared to control sequences from their
unaffected siblings, 96% of these variants drove signifi-
cant allele-specific changes in reporter gene expression
[6]. Another study reported ASD-associated paternally
inherited deletions mapping upstream of the LEO1 gene,
which was previously implicated in ASD by exome se-
quencing [10]. Interestingly, fibroblast cell lines revealed
elevated expression of two neighboring protein-coding
genes (LEO1 and MAPK6) in carriers of the deletion
who had ASD. The deletions encompass a predicted
regulatory element that interacted with the promoters of
both LEO1 and MAPK6 [10]. This regulatory element is
thought to be important for ASD risk because the au-
thors also reported a partially overlapping polymorphic
deletion that preserved this element and was common in
people who did not have ASD [10]. Together, these
studies revealed that ASD-associated variants in non-
coding regulatory elements can directly affect the ex-
pression of neurodevelopmental genes and ASD risk
genes.

Post-transcriptional regulatory elements in ASD
Misregulation of RNA splicing has also been implicated
in ASD (reviewed in [63]), although the underlying gen-
etic mechanisms have not been extensively explored. Al-
ternative splicing is the regulated inclusion or exclusion
of specific exons during mRNA processing, which can
have a profound impact on protein function. RNA-seq
analyses of the brains from individuals with ASD re-
vealed the downregulation of splicing proteins RBFOX1
[64] and nSR100 [65], which were associated with al-
tered splicing of a subset of synaptic genes or genes with
conserved microexons (~ 3–15 nucleotides), respectively.
RNA-seq analyses also revealed ASD-associated changes
in activity-dependent alternative splicing events and re-
gional gene expression patterns in the cortex [23].
Activity-dependent alternative splicing of microexons in
EIF4G1 and EIF4G3 is impaired in ASD, and deletion of
the Eif4g1 microexon in mice led to prolonged neuronal
activation, altered synaptic plasticity, and impaired social
interactions [66]. These microexons encode prion-like
domains, and their loss led to aberrant translation of
proteins that control synaptic transmission and neuronal
activity.
WGS studies have begun to uncover ASD-associated

non-coding variants in splice signals and untranslated
regions. For example, intronic single nucleotide variants
that were predicted to alter splicing of transcripts from
synaptic genes like GRIN1 [3], the ASD candidate gene
PTEN [3], and the neurodevelopmental gene SMEK1 [6].
WGS studies also reported that ASD-associated de novo
variants were enriched in splice sites or untranslated re-
gions (UTRs) of mRNAs [4, 5], particularly UTRs of
known ASD risk genes and neurodevelopmental genes
[17]. The study of ASD-associated de novo variants in 3’
UTRs of brain-specific transcripts is of particular im-
portance since neuronal mRNAs have the longest 3’
UTRs among all tissues, implying that these molecules
are under strong post-transcriptional regulation [67].
Moreover, a few studies reported variants that disrupt
untranslated exons of the ASD gene MBD5 [14–16]
(Table 1).
UTRs often harbor binding sites for regulatory RNA-

binding proteins and microRNAs (miRNAs) [68], and
miRNAs have also been implicated in ASD. miRNAs are
short (19–25 nucleotide), non-coding RNA molecules
that bind to the UTRs of target mRNAs and affect
mRNA stability or translation [69]. miRNAs have been
implicated in ASD by genetic studies and animal models,
although mechanisms remain largely unexplored. Het-
erozygous mutation of AGO1, which is critical for
miRNA function, is associated with a syndromic neuro-
developmental disorder that includes ASD features [70].
Mice with targeted deletions of specific miRNAs or
miRNA clusters exhibit pronounced changes in social

Ross et al. Molecular Autism           (2020) 11:33 Page 5 of 14



behavior [71, 72]. The latest release of the miRBase data-
base (v22) accounts for 2654 mature miRNAs identified
in humans [73], the majority of which are expressed in
the brain [74]. Dozens of microRNAs are consistently
misregulated in ASD, and known ASD genes are
enriched among targets of these miRNAs [75, 76]. For
example, 28 miRNAs differentially expressed in the cere-
bellar cortexes of people with ASD, 7 of which target the
SHANK3 mRNA [77]. Also, candidate genes for ASD
and schizophrenia were enriched for two miRNA target
sequences, although the associated miRNAs were not re-
ported [78]. Despite these examples of ASD-associated
miRNA misregulation, there are few reports describing
causal links between mutations in the UTRs of ASD-risk
genes that affect the protein outputs of their respective
mRNAs.
Several WGS or whole-exome sequencing studies have

reported genetic variants predicted to affect miRNAs or
miRNA target sequences. One study specifically tested
the hypothesis that ASD-associated synonymous variants
in coding sequences may affect miRNA binding sites, al-
though no significant enrichment for miRNA binding
sites was detected [79]. The miR-133b/miR-206 cluster
was implicated in ASD in a genome-wide association
study (GWAS) discovery cohort, although no significant
association was detected in a replication cohort [80].
WGS revealed sequence variants that affect the ability of
miR-873-5p to bind and regulate ASD-associated target
genes, including NRXN2 and CNTNAP2 [17]. Together,
these findings suggest that ASD-associated variants in
post-transcriptional regulatory elements may have the
potential to affect splicing, stability, and translation of
protein-coding transcripts.

Long non-coding RNAs in ASD
Most of ~ 16,000 lncRNAs encoded by the human gen-
ome [30, 81] have not yet been characterized, but 40%
are expressed in the brain and some have been impli-
cated in brain function [82]. For instance, lncRNAs in-
fluence neuronal versus glial fate in cortical progenitors
[83], while others are upregulated in response to neur-
onal activity [84–86] and have roles in neuronal excita-
tion and plasticity [87, 88]. When mouse fibroblasts
were converted directly to neurons, ~ 60% of differen-
tially expressed transcripts were non-coding RNAs [24],
suggesting potential roles in neuronal development.
Data from genetic [18, 20–22, 24] and gene expression

studies [23] have also implicated lncRNAs in ASD. The
first lncRNA to be convincingly linked to ASD was
PTCHD1-AS [21], which is frequently disrupted in
people with ASD [89]. A recent study supported a role
for PTCHD1-AS in ASD and also implicated the unchar-
acterized lncRNA AK127244 [18, 19]. Genetic and gene
expression studies have also suggested potential roles for

other lncRNAs in ASD, including MSNP1-AS [22],
LINC00689, and LINC00693 [23], although the under-
lying mechanisms for their involvement with ASD re-
main largely unexplored and could be variable. A recent
study reported several other developmentally regulated
brain-expressed lncRNAs that are disrupted in ASD or
intellectual disability, one of which (lnc-NR2F1) was
shown to regulate autism risk genes and promote matur-
ation of mouse stem cell-derived neurons [24]. These
findings combined with our own recent work on
PTCHD1-AS (described below) provide direct evidence
that ASD-associated non-coding RNAs directly regulate
neurodevelopmental processes relevant to ASD.
The aforementioned studies suggest that non-coding

variants play important roles in the development of
ASD, although the functions of these variants and the
regulatory elements they disrupt remain largely un-
known. Next, we discuss recent advances in cellular re-
programming and CRISPR technologies that are poised
to greatly advance our understanding of ASD-associated
non-coding variants.

Human pluripotent stem cell models of ASD
Human pluripotent stem cells (hPSCs), including human
embryonic stem cells (hESCs) and human iPSCs, have
the capacity to differentiate into unlimited supplies of
brain cells and therefore have tremendous potential for
modeling ASD [31]. To date, hPSC studies of ASD have
focused largely on variants that disrupt protein-coding
genes, which have revealed a wide range of synaptic pheno-
types (Table 2). Synaptic phenotyping in iPSC models of
ASD has focused primarily on excitatory synaptic function,
which is impaired in some models and increased in others
(Table 2). The majority of iPSC ASD models with synaptic
phenotypes report decreased connectivity, and for some
genes, the underlying mechanisms have been determined.
Physiological decreases in synaptic function can result from
fewer excitatory synapses (22q13.3+/−, SHANK3−/−), impair-
ments in neurotransmitter release (STXBP1+/−, NRXN1+/−),
or hypofunction of excitatory NMDA receptors (PTCHD1-
AS) (Table 2). Conversely, some other genetic models of
ASD show increased synaptic function via increased
synapse numbers (NLGN4R704C, SHANK2+/−) or hyper-
function of NMDA receptors (EHMT1+/−) (Table 2).
Together, these findings support the notion that in-
creases or decreases in synaptic activity outside of the
range that is typical of unaffected individuals may im-
pair sensory processing and social interactions, thereby
contributing to ASD development [90].
The protein-coding variants modeled to date are

known or predicted to be of high penetrance, whereas
the penetrance is unknown for most non-coding vari-
ants. Therefore, iPSC experiments modeling of non-
coding variants must be carefully designed to minimize
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heterogeneity and experimental noise. Here, we discuss
experimental design considerations for using iPSCs to
model ASD, with a specific focus on challenges associ-
ated with modeling the consequences of non-coding
variants.

Experimental controls in hPSC models of ASD
Published hPSC models of ASD have used two primary
approaches: personalized iPSCs from donors with ASD
or genome editing to introduce specific ASD-associated
variants in reference lines. Modeling ASD with iPSCs
typically uses a case-control model, where iPSC-derived
neurons from people with ASD are compared to neu-
rons from people who do not have ASD. These studies
are often stratified by gene or shared neurodevelopmen-
tal phenotypes (Table 2), and controls are either un-
affected family members [20, 41, 42] or unrelated people
who are matched to the study subjects by age, sex, or
both [20, 34, 35, 39, 40]. This approach is made challen-
ging by extensive intra-individual variability and often
requires extensive biological and technical controls/rep-
licates to provide sufficient power to detect neuronal
phenotypes [46]. Furthermore, iPSC reprogramming is
associated with genomic instability and de novo genomic
variants [91, 92], so multiple independent iPSC lines
should be assessed for each donor. To overcome genetic
and phenotypic heritability among individuals, several
groups have increasingly employed “isogenic” genome
editing approach for modeling ASD in hPSCs [20, 32,
36–38, 41, 43], which results in mutant and control cell
lines with comparable genetic backgrounds.
Isogenic approaches have been extensively used for mod-

eling ASD (Table 2) and are also very powerful when used
together with case-control approaches [20, 41, 42]. Genome
editing has been used to introduce mutations in several aut-
ism candidate genes, which has revealed a range of synaptic
and gene expression phenotypes (Table 2). RNA-seq ana-
lyses in CRISPR-edited neurons with heterozygous CHD8
mutations revealed similar misregulated genes in mono-
layer neurons and organoids [93]. Interestingly, the top mis-
regulated genes in CHD8+/− neurons included the lncRNA
DLX6-AS1, which was also misregulated in organoids from
people with idiopathic ASD and macrocephaly [94]. Gen-
ome editing approaches have also revealed a wide range of
ASD-associated synaptic phenotypes in hESC-derived
neurons with engineered variants in NRXN1, STXBP1,
SHANK3, and NLGN4 (Table 2). The penetrance of ASD-
associated non-coding variants is largely unknown, so
introducing them by genome editing may not result in de-
tectable phenotypes. Starting with iPSCs that are genetically
matched to people with ASD improves construct validity
and presumably increases the likelihood of detecting
phenotypic differences. Upon identification of any ASD-
associated phenotypes and correlated gene expression

changes, genome editing can be used to repair the non-
coding variant or introduce it into control iPSCs. We used
this approach to determine that a nonsense mutation in the
synaptic gene SHANK2 was both necessary and sufficient
for overconnectivity that we observed in an iPSC model of
ASD [41].
Another important consideration for modeling ASD-

associated non-coding variants is the selection of con-
trols. Although unaffected family members are often
used as controls to partially account for genetic variabil-
ity [20, 41, 42], some relatives have ASD-like features or
carry other combinations of genetic variants that may
cumulatively affect synapse function deleteriously [1].
Therefore, we recently reported a panel of iPSC lines
from two males and two females who have no overt dis-
ease phenotypes and who were also shown by WGS to
have minimal loads of genomic variants [95]. These
iPSCs were reprogrammed using non-integrating Sendai
virus vectors, which is less likely than retrovirus or
mRNA reprogramming to result in de novo coding vari-
ants [91]. These iPSC lines (Personal Genome Project
Canada participants) efficiently differentiate to neurons
and other lineages and support genome editing to intro-
duce specific variants. These iPSCs were also analyzed
by WGS, which revealed surprising numbers of single
nucleotide variants: each iPSC line had over 1000 de
novo variants, and genome-edited iPSCs had hundreds
of variants compared to the parental line [95]. Some of
these de novo variants had the potential to affect
disease-related cellular phenotypes, so we identified
variant-preferred PGPC iPSC lines for specific applica-
tions like neuronal phenotyping. In addition to serving
as controls for modeling ASD, we also foresee neurons
from the PGPC iPSC lines being very useful for estab-
lishing the baseline range of “normal” synaptic functions
in human iPSC-derived neurons.

Neuronal differentiation methods
Although a wide range of protocols has been developed
for making specific neuronal and non-neuronal cell types
from iPSCs [96], most iPSC approaches for modeling ASD
have used neurons with a cortical forebrain identity [31].
Approaches for making iPSC-derived neurons rely pri-
marily on either directed differentiation via a multipotent
progenitor stage or direct conversion from pluripotent
stem cells to post-mitotic neurons [96]. Both approaches
have been used to model ASD (Table 2), although they
each have relative advantages and disadvantages.
Phenotypic consequences of regulatory non-coding

variants may be restricted to specific lineages or time-
points, and directed differentiation offers the advantage
of interrogating multiple cell types within a single ex-
periment. For example, directed differentiation to gener-
ate excitatory cortical neurons typically results in mixed
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cultures that also contain undifferentiated progenitors,
inhibitory neurons, and astrocytes [97, 98]. Such mixed
cell populations are observed when neurons are differen-
tiated as adherent cultures or in suspension as three-
dimensional organoids [99]. Neurons made by directed
differentiation also mature asynchronously over the 6–
14 weeks required for synapse development, so the re-
sultant cultures contain neurons of varying ages. These
mixed populations are advantageous for examining cell
fate specification and migration [39] (particularly in
organoids [99]) and for exploring interactions between
different brain cell types [34, 40]. However, cell type
composition in neuronal cultures made by direct differ-
entiation varies between donors and batches, which in-
troduces experimental noise and decreases statistical
power to detect phenotypic differences [46, 100].
Direct conversion inherently overcomes heterogeneity

by using specific transcription factors to swiftly generate
pure populations of post-mitotic neurons [31, 96]. Ec-
topic expression of human or mouse neurogenin-2
(NGN2/Ngn2) in PSCs or neural progenitor cells results
in homogeneous populations of excitatory cortical neu-
rons that mature in only 3–4 weeks [101, 102]. Neurons
made by direct conversion have been used to analyze
synapse function and network connectivity in hPSC
models of ASD (Table 2), and direct comparison with
neurons from directed differentiation have revealed simi-
lar phenotypes [36]. Direct conversion can also generate
homogenous cultures of inhibitory neurons [103] and as-
trocytes [104]. Due to their relative homogeneity, neu-
rons made by direct conversion are particularly useful
for gene expression analyses to detect regulatory conse-
quences of non-coding variants. However, recent reports
suggest that direct conversion may mask ASD-associated
phenotypes that arise in the neuronal progenitor phase,
such as epigenetic misregulation of synaptic gene ex-
pression [105].
As a first step in deciding which approach to use for

modeling a potential regulatory variant, it is important
to determine when and where the regulatory element is
active. Publicly accessible transcriptome data from the
developing and adult human brain and from differentiat-
ing iPSC-derived neurons [106–112] can be used to de-
termine the cell type and developmental time point at
which some regulatory elements are active. Transcrip-
tion start site and chromatin state data can also be used
to infer enhancer activity [60–62, 111–113], which can
then be correlated with transcriptome data to identify
potential target genes. If variants are predicted to have a
function during early brain development or in cell-type
specification, then directed differentiation would likely
be the more suitable model. Conversely, if variants are
predicted to function largely in post-mitotic neurons,
then direct conversion may be preferable due to swifter

maturation and homogeneous cultures. Upon determin-
ing the cell type for experimental analyses, it is of para-
mount importance that the resultant neurons be tested
to ensure that the regulatory element of interest is active
and that the cells are suitable for modeling ASD.

Identifying phenotypes in hPSC models of ASD
Gene expression analyses
We anticipate that non-coding variants will affect neur-
onal gene expression, but the design of expression ana-
lyses with iPSC-derived neurons can influence the
interpretation of results. The heterogeneity that results
from directed differentiation is undesirable for tran-
scriptomics [20, 41] and other population-level analyses
[98], although specific cell types can be enriched using
genetic reporters [114] or cell surface markers [20, 41,
98]. If possible, transcriptomic analyses should be per-
formed using isogenic controls to improve sensitivity to
detect expression changes [46]. In our previous work
modeling ASD with iPSCs, we found that isogenic pairs
revealed robust expression changes [32, 41], whereas an
analysis with a case-control design yielded no consist-
ently misregulated genes [20]. It may be particularly dif-
ficult to detect expression changes in case-control
studies because of the large sample size required to over-
come inherent individual and technical variability in
iPSC-derived neurons [46, 100]. However, computational
advances may improve signal-to-noise for detecting ex-
pression changes in mixed populations of neurons, as
was recently reported for modeling schizophrenia [115].
Another consideration when modeling transcriptional

consequences of non-coding variants in ASD is the need
for substantial sequencing depth in transcriptomic ana-
lyses. Detection of alternatively spliced exons and low
abundance lncRNAs requires thorough read coverage.
Indeed, we recently found that a read depth of 60 mil-
lion paired-end reads per sample was necessary to detect
the ASD-associated lncRNA PTCHD1-AS [20]. Further-
more, due to the potentially subtle or cis-acting effects
of non-coding variants on the expression of target genes,
it may also be necessary to perform allele-specific gene
expression analyses, which also benefits from improved
sequencing coverage [116].

Single-cell analyses: morphology and electrophysiology
iPSC models have confirmed the hypothesis that synaptic
dysfunction underlies ASD (Table 2), but the mechanisms
underlying synapse dysfunction vary considerably between
models. The gold standard approach for assessing excita-
tory synaptic activity is patch-clamp electrophysiology to
record miniature or spontaneous excitatory postsynaptic
currents (mEPSCs or sEPSCs, respectively). The frequency
of these excitatory synaptic events can be correlated with
imaging data that quantify excitatory synapses and
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dendrite length [37, 38, 41]. Together, these metrics pro-
vide insight into the amount of synaptic connectivity and
the potential mechanisms underlying any changes. iPSC-
derived neurons have revealed a striking dichotomy in
ASD-associated synaptic connectivity phenotypes, with
different models displaying under- or over-connectivity
that can arise by several distinct mechanisms (Table 2).
Some of the phenotypes observed in iPSC-derived neu-

rons recapitulate those observed in mouse models, although
contrasting phenotypes have also been reported from these
two modeling approaches. Similar functional impairments
in excitatory synapses and in hyperpolarization-activated
cation (Ih) channels were observed in human and mouse
neurons with SHANK3 mutations [38]. Human and mouse
neurons deficient for EHMT1 also share decreased network
burst frequency and increased NMDA receptor activity
[44]. Conversely, heterozygous variants in STXBP1 [37],
NRXN1 [36], and SHANK2 [41] are associated with ASD in
people and affect connectivity in iPSC models, whereas het-
erozygous mutations have little or no phenotypic effect on
synaptic function in mice. Future work will resolve whether
phenotypic differences are species-specific or the result of
differences in the cell types that were assessed.
iPSC-derived neurons are subject to both technical and

biological variability that can introduce noise in assays of
synaptic connectivity. We and others have used co-culture
approaches to overcome this variability and record synap-
tic function in ASD neurons and control neurons within
the same cultures [34, 41, 117]. We labeled mature excita-
tory neurons from controls and from people with ASD
using two different fluorescent reporters [41]. These neu-
rons were then sparsely seeded on a lawn of neurons (ei-
ther from controls or people with ASD) and mouse
astrocytes to provide a controlled synaptogenic environ-
ment. Simultaneous phenotyping of control neurons and
ASD neurons in the same dish revealed increased con-
nectivity in neurons with SHANK2 variants. This within-
well normalization approach reduced experimental vari-
ability and improved sensitivity to detect phenotypic
changes [41]. An extension of this approach compared
isogenic neurons on the lawns of either mutant or control
neurons to determine whether any functional impairments
were due to pre- or post-synaptic dysfunction [117].
Within-well normalization combined with isogenic con-
trols should reduce noise and improve consistency in hu-
man iPSC models of ASD-associated non-coding variants.
Another approach for combatting heterogeneity is to

examine gene expression by single-cell transcriptomics.
Single-cell RNA-seq has been used to identify misregu-
lated cellular processes in iPSC models of Parkinson’s dis-
ease [118] and trisomy 21 [119]. This approach may also
be combined with single-cell chromatin accessibility to de-
tect coordinated changes in gene expression and enhancer
usage [120]. Finally, single-cell transcriptomics can also be

integrated with analyses of neuronal morphology and
function using Patch-seq: this modification of patch-
clamp electrophysiology uses the patching pipette to de-
liver a fluorescent dye to reveal neuronal morphology and
then to acquire cytoplasmic RNA for single-cell RNA-seq
following the completion of recordings [121].

Network activity
Assessing the function of neural networks can yield
insight into how the underlying changes in gene expres-
sion, morphology, and synaptic transmission alter con-
nectivity in models of ASD. Using microelectrode arrays
(MEAs), neurons can be plated on a grid of microelec-
trodes to simultaneously record extracellular voltage
changes within a synaptic network [122]. Multi-well
MEAs can contain several hundred electrodes per plate
and read at multiple timepoints to non-invasively ac-
quire information on neural network development and
function. Captured signals can be filtered to obtain
higher frequency action potential spikes or lower fre-
quency local field potential oscillations [123]. As neu-
rons mature, synchronous network bursting patterns
emerge, which can be used to assess differences in net-
work dynamics and circuitry in control and ASD neural
cultures. A recent study of 8-month-old cortical orga-
noids even suggested that iPSC-derived neurons can ma-
ture to the point of displaying oscillatory network events
similar to preterm human electroencephalograph re-
cordings [124]. MEA datasets are also rich in positional
information, which can provide insight into circuitry
changes resulting from differences in neuron morph-
ology or intrinsic function.
MEAs have recently been used to explore ASD-

associated action potential firing and connectivity phe-
notypes (Table 2), which have revealed further evidence
for both under- and over-connectivity in different
models. Directed differentiation of mixed excitatory and
inhibitory neuron cultures from people with idiopathic
ASD exhibited reduced spiking activity and network
bursting [39, 40]. Genome-edited excitatory neurons
with mutations of several different ASD risk genes had
decreased mean firing rate and network burst frequency
[32]. Conversely, excitatory neurons from people with
heterozygous deletion of CNTN5 and EHMT2 exhibited
hyperactive networks [42]. iPSC-derived excitatory neu-
rons from individuals with Kleefstra syndrome (who also
had ASD diagnoses) showed network bursts with de-
creased frequency and altered kinetics, and these pheno-
types could be rescued pharmacologically [44].
MEA phenotyping is attractive for modeling ASD be-

cause the simple non-invasive recordings facilitate
higher throughput applications than imaging or patch-
clamp electrophysiology. However, a careful experimen-
tal design will be necessary to overcome extensive
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technical and biological variability in baseline MEA met-
rics (i.e., mean firing rate, number of active electrodes).
To overcome this variability, we recommend using iso-
genic controls when possible, performing ASD/control
analyses on the same plate to account for batch effects,
and establishing a schedule to ensure consistent laten-
cies between media renewal and MEA recordings. Previ-
ous work in hPSC models of ASD has shown that some
synaptic phenotypes can be rescued (Table 2). The
medium-throughput nature of MEA phenotyping holds
promise for building on these rescue approaches and es-
tablishing drug-screening platforms to find candidate
compounds for correction of under- or over-connected
neural networks.

Functional analyses of non-coding RNA in iPSC-
derived neurons
Several recent studies have reported potential roles for
miRNAs and lncRNAs in ASD-associated processes like
neurodevelopment. Global expression analyses revealed
that several miRNAs change in expression during differen-
tiation of iPSC-derived neurons [125, 126]. Expression of
miR-4449, miR-181a, and miR-1290 were altered in iPSC
models of schizophrenia [127], fragile X syndrome [128],
and ASD [129], respectively. miR-199 and miR-214 are
upregulated in the neurodevelopmental disorder Rett syn-
drome, which is associated with impaired neurogenesis in
human iPSCs and developing mice [130]. lncRNAs have
also been implicated in ASD-associated processes like
neurodevelopment and activity-dependent gene expres-
sion [53]. The lncRNAs TUNA [131] and lnc-NR2F1 [24]
regulate gene expression and neuronal differentiation in
mouse embryonic stem cells. LINC00473 is a primate-
specific lncRNA that is robustly induced by synaptic exci-
tation of human iPSC-derived neurons [85] and may regu-
late the activity-dependent transcription factor CREB
[132]. NEAT1 is a highly abundant lncRNA that is down-
regulated in response to neuronal depolarization and in-
teracts with epilepsy-associated potassium channels to
regulate the excitability of human iPSC-derived neurons
[88]. Together, these data suggest that non-coding RNAs
contribute to a wide range of ASD-associated neuronal
processes.
We recently reported a human iPSC approach for

modeling ASD-associated non-coding variants focused
on the lncRNA PTHCD1-AS [20]. We generated iPSCs
from three unrelated males with ASD who had deletions
that encompassed one or more exons of PTCHD1-AS,
along with iPSCs from three unaffected individuals.
These iPSCs were differentiated into forebrain neurons,
and phenotypic analyses revealed pronounced deficits in
excitatory synaptic function, including decreased fre-
quency of mEPSCs and diminished amplitude of
NMDA-evoked currents. We also used genome editing

to replace a critical exon of PTCHD1-AS with a prema-
ture polyadenylation sequence, which recapitulated the
mEPSC frequency impairment and confirmed the im-
portance of PTCHD1-AS in excitatory synaptic function.
Our work with PTCHD1-AS therefore provides proof of
principle that ASD-associated non-coding variants can
have pronounced phenotypic consequences in human
iPSC-derived neurons.

Future directions
CRISPR-based tools for validating regulatory variants
Future analysis of non-coding variants in ASD will bene-
fit from the concurrent application of CRISPR-based
tools [133] for artificially manipulating genes and regula-
tory elements. For instance, variants that alter promoter
activity can be independently modeled using CRISPR-
interference (CRISPRi) and CRISPR-activation (CRIS-
PRa) to deliver transcriptional repressors or activators to
target promoters [133]. In a recent study [117], CRISPRi
and CRISPRa were elegantly employed to model the
functional consequences of 5 schizophrenia-associated
common variants that were previously implicated in mis-
regulation of neuronal genes. CRISPRi and CRISPRa are
also potentially useful for functional analyses of
lncRNAs, which often have cis functions at the endogen-
ous site of lncRNA synthesis [82].
ASD-associated enhancers and splice sites can also be

evaluated using CRISPR-based approaches. Enzymati-
cally inactivated Cas9 can be fused to catalytic domains
that add or remove histone modifications to directly ma-
nipulate enhancer function. For example, Cas9-mediated
recruitment of catalytic domains of p300 and HDAC8 has
been used to artificially activate or block dynamically reg-
ulated enhancers in mouse neurons [134]. CRISPR can
also be used to deliver cytidine deaminase to target tran-
scripts to force exon skipping or exon inclusion [135].
These approaches provide the opportunity to recapitulate
expression changes caused by ASD-associated non-coding
variants, which will independently verify their sufficiency
to drive ASD-associated synaptic phenotypes.

Predicting lncRNA function: detecting cryptic coding
capacity
Although lncRNAs are defined in part by their limited
protein-coding potential, recent results have challenged
the notion that all lncRNAs are devoid of translated
open reading frames. Several approaches have been de-
veloped for characterizing the translational landscapes of
human cells, resulting in the surprising discovery that
some lncRNAs are associated with ribosomes and may
therefore undergo translation [136]. Historically, open-
reading frame prediction algorithms typically have a
minimum threshold of 100 codons, leading some tran-
scripts that encode small proteins or peptides to be
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classified as lncRNAs [137]. However, ribosome profile
sequencing (Ribo-seq) has revealed that some of these
lncRNAs have sequencing reads with 3 nucleotide peri-
odicity, as is seen in normal ribosome movement on
coding mRNAs [136]. Furthermore, Ribo-seq-enriched
lncRNAs often encode conserved short open reading
frames that are enriched in synonymous mutations [136,
137]. In a recent translational profile of human heart,
22% of expressed lncRNAs were translated into potential
micropeptides [138]. Therefore, future studies of ASD-
associated lncRNAs should first seek to rule out peptide/
protein-coding potential before attempting to model any
non-coding regulatory functions.

Conclusions
Continued WGS will invariably lead to increasing numbers
of ASD-associated non-coding variants being discovered.
iPSCs and genome editing provide exciting opportunities to
model the consequences of these variants in human
neurons and for correlating gene expression changes with
functional differences in synaptic connectivity. Careful ex-
perimental design and use of well-selected experimental
controls (including isogenic controls when possible) will re-
duce experimental noise and heterogeneity, leading to more
sensitive analyses. Determination of the phenotypic conse-
quences of non-coding variants will provide insights into
both the neuronal dysfunction that underlies ASD and the
mechanisms governing the regulation of human genetic
information.
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