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Abstract

Thalamocortical circuitry

Background: Met receptor tyrosine kinase regulates neurogenesis, differentiation, migration, connectivity, and
synaptic plasticity. The human Met gene has been identified as a prominent risk factor for autism spectrum disorder
(ASD). Met gene-altered mice serve as useful models for mechanistic studies of ASD. Inactivation of Met in
excitatory cortical neurons in mice (Emx1/Met " mice) yields a phenotype in which significantly decreased
GABA, receptor-mediated inhibition shifts the excitation/inhibition (E/I) balance toward excitation in the
somatosensory cortex. Further, unlike that seen in wild-type mice, insulin does not increase inhibition in the mutant
cortex, suggesting that one of the consequences of kinase inactive Met gene could be desensitization of insulin
receptors. To test this hypothesis, we investigated the effects of insulin receptor sensitizer, pioglitazone, on
inhibition in the somatosensory thalamocortical circuitry.

Methods: We used whole-cell patch clamp electrophysiology and analyzed excitatory and inhibitory responses of
cortical layer IV excitatory cells following stimulation of their thalamic input in thalamocortical pathway intact brain slices.
We applied insulin alone and insulin + a thiazolidinedione, pioglitazone (PIO), to test the effects of sensitizing insulin
receptors on inhibitory responses mediated by GABA, receptors in the somatosensory cortex of Emx1<%/Met " mice.
Results: In WT brain slices, application of insulin together with PIO did not enhance the effect of insulin alone. In contrast,
PIO application induced a much larger inhibition than that of insulin alone in Met-defective cortex. Thus, insulin resistance
of GABA4 receptor-mediated response in Met mutant mice may result from desensitized insulin receptors.

Conclusions: Sporadic clinical studies reported improved behavioral symptoms in children with autism following PIO
treatment. We show that PIO can aid in normalization of the E/I balance in the primary somatosensory cortex, a potential
physiological mechanism underlying the positive effects of PIO treatment.
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Background

Numerous studies have associated Met gene as a of a func-
tional risk allele in autism spectrum disorders (ASD) [1-3].
The Met receptor tyrosine kinase is a multifunctional recep-
tor with diverse biological roles activating various intracellu-
lar signaling pathways. Met mutations in mice provide
models to investigate cellular and molecular deficits in the
nervous system. One such line, EmxI1“/Met Fo% mice (from
here on referred to as Met-Emixl mouse), has kinase-
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inactive Met gene in excitatory neurons of the neocortex,
hippocampus, and olfactory bulbs [4, 5]. For cortical studies,
these mice may be considered as cortex-specific null muta-
tion of Met. Previously, we reported that in thalamocortical
brain slices from Met-Emx1 mice the E/I ratio is biased to-
ward excitation in the primary somatosensory cortex due to
decreased GABA, receptor-mediated inhibition [6].
Excitation-inhibition (E/I) balance in neural circuits is a type
of homeostatic synaptic plasticity that is notably affected in
various neurological and psychiatric conditions [7, 8].
Insulin receptors are abundant in the brain [9, 10], and
insulin regulates GABAergic inhibition by increasing the
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density of GABA4 receptors, consequently augmenting in-
hibitory postsynaptic currents [11, 12]. In our study, we
found that in wild-type (WT, C57BL/6) brain slices insulin
enhances GABA, receptor-mediated response. In contrast,
insulin treatment had no effect on slices from Emx1“°/Met
f10% mice [6]. To determine whether sensitizing insulin re-
ceptors can enhance GABA, receptor-mediated response,
we tested pioglitazone (PIO) treatment. PIO is a widely
used thiazolidinedione that acts as an insulin-sensitizer
through activation of the peroxisome proliferator-activated
receptor-y [13]. There are two members of the class thiazo-
lidinediones that have been used as insulin sensitizers in
treatment of type 2 diabetes: pioglitazone (Actos) and rosi-
glitazone (Avandia). We have chosen to use PIO because it
is the most widely used and rosiglitazone has yielded less-
desirable effects. Furthermore, few clinical studies have re-
ported improved symptoms in neurodevelopmental and
neurogeriatric conditions following PIO treatment [14—20].
In the future, testing different members of this drug family
under in vivo conditions could yield important insights. In
WT thalamocortical slices, application of insulin plus PIO
did not enhance the effect of insulin alone. However, this
treatment induced a much larger inhibition than that of in-
sulin alone in Met-EmxI mice. This finding indicates that
the insulin resistance of GABA, receptor-mediated re-
sponse in Met-Emx1 mice mainly results from desensitized
insulin receptors.

Methods

Animals

The brain slices were derived from Met-EmxI mice of both
sexes (17 =5). We obtained these mice through crossings of
the floxed Met mouse (Met-fx) with the cerebral cortical
and hippocampal specific EmxI-cre mouse. Our original
sources and further details of the mouse lines are detailed
in a previous paper [6], currently both lines are commer-
cially available (Met-fx stock #016974, EmxI-Cre, stock
#005628, Jackson Laboratory, Bar Harbor, ME). Control
brain slices were from mice with Met-fx or Emx1-cre alleles
alone or C57BL/6 (the background of the mutant line) mice
(n=5). There were no differences between the three types
of control slices. For mouse use, we followed the National
Institute of Health Guide for the Care and Use of Labora-
tory Animals (ISBN:13:978-0-309-15400-0, revised in 2011)
and the UMB SOM Animal Use and Care Committee ap-
proved our protocol.

Brain slice preparation

Two- to 4-week-old mice were euthanized and their brains
removed into cold sucrose supplemented with artificial
cerebrospinal fluid (ACSE, in mM: NaHCOj; 25, glucose 11,
sucrose 234, KCI 2.5, NaHPO,, 1.25, MgSO, 10). Next, we
cut 350-pum-thick thalamocortical pathway intact brain
slices using a vibratome (Campden 7000msz), at an angle

Page 2 of 8

of 50-55° from the mid-sagittal plane and 10° from the
coronal plane [21, 22]. In such slices, the connections
from the ventrobasal nucleus of the thalamus (VB) to the
primary somatosensory, specifically the whisker represen-
tation zone, the barrel cortex, remain intact. We kept the
slices in normal ACSF (in mM: NaCl 126, KCl 3.0,
NaH,PO, 1.25, MgSO, 1.0, NaHCO; 26, glucose 10,
CaCl, 2, L-ascorbic acid 1.3, pH =7.4) for at least 1 h, at
room temperature. We placed the slice containing the
thalamocortical pathway in a submerged-type recording
chamber (27 L, Warner Ins.), and continuously perfused
(>2 mL/min) with normal ACSF at room temperature.
Under these conditions, intra-cortical circuits are inacti-
vated, and the excitatory thalamocortical synapses on layer
IV neurons can be isolated [23].

Thalamocortical slice electrophysiology

We prepared borosilicate glass (WPI, K150F-4) whole-cell-
patch micropipettes by pulling them in three stages with a
P-87 horizontal puller (Sutter Instrument Co.). We back-
filled the electrodes with a Cs-based intracellular solution
(in mM: CsMeSQO3, 115; NaCl, 10; KCL, 1, MgCl,, 4; CaCl,,
1; EGTA, 11; HEPES, 20; Na,-ATP, 3; Na,-GTD, 0.5, pH =
7.25, >290 mOsm). The electrodes had a tip resistance of
5-9 MQ. Spiny stellate and star pyramid cells are the exci-
tatory neurons of layer IV barrel cortex. We patched these
neurons to form whole-cell configuration. We passed de-
polarizing current pulses through the patch pipette in
current clamp mode to identify the cells by their firing pat-
terns [24—26]. For stimulation of the thalamocortical affer-
ents, we used a concentric electrode (FHC, CBFP ]50)
either inserted in the VB, which can be visualized in slices
or in the internal capsule (IC). We passed 0.33 Hz electrical
pulses for 0.3 ms duration, 0.33 Hz to evoke postsynaptic
responses in both current- and voltage-clamp modes. We
acquired the by Axopatch 200B amplifier and an Instru-
TECH ITC-16 interface unit and stored on a Dell DM061
computer with PULSE (HEKA) software program.

Isolation of GABA, receptor- and AMPA receptor-
mediated postsynaptic currents

At -60 mV holding potential, stimulation of the VB
elicits an early inward current (excitatory postsynaptic
current, EPSC) followed by an outward current (inhibi-
tory postsynaptic current, IPSC). As we move the hold-
ing potential toward more negative values, the outward
current becomes smaller, and when this current disap-
pears around — 70 mV holding potential, we define this
as the GABA 5 receptor reversal potential. In the absence
of any NMDA receptor blockade, the remaining inward
current is pure AMPA receptor-mediated EPSC. This in-
ward current can be blocked by 10 pM NBQX, but not by
50 pM picrotoxin (PTX). Changing the holding potential
toward more positive values decreased the amplitude of the



Lo and Erzurumlu Molecular Autism (2018) 9:13

inward current and it disappeared around 0 mV holding
potential, which we defined as the reversal potential for glu-
tamate receptors. The resulting outward current could be
completely blocked by 50 pM PTX but not by 100 uM DL-
APV; thus, it is the isolated GABA, receptor-mediated
IPSC. We calculated the ratio of AMPA/GABA (E/I) for
each neuron by averaging 10 traces of EPSCs and IPSCs in-
duced by maximal stimulation.

GABA, receptor-mediated spontaneous IPSCs (sIPSCs)

We recorded spontaneous IPSCs at 0 mV. We measured
the averaged amplitude of sIPSCs using MiniAnalysis
Software.

Chemicals

Insulin (500 nM), pioglitazone (PIO, 10 pM), an in-
sulin receptor sensitizer, NBQX (10 pM), an AMPA
receptor antagonist, DL-APV (100 puM), a NMDA re-
ceptor antagonist, and PTX (50 uM), a GABA, re-
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chemicals are purchased from Sigma-Aldrich Co. (St.
Louis, MO).

Data analysis

We used Student’s ¢ test to determine significance. All
data are expressed by mean +s.e.m. (standard error of
the mean). Box and whisker plots were generated in R
studio version 1.1.419.

Results

Functional insulin receptors in the barrel cortex of WT
mice

Previously, we investigated the thalamocortical synaptic
transmission in the barrel cortex of various lines of
transgenic and WT mice [6, 27, 28]. In complete agree-
ment with those studies, layer IV excitatory neurons
show adapting discharges (regular spikes, RS) upon
membrane depolarization (Fig. la—c). Stimulation of VB
induces an excitatory postsynaptic potential-inhibitory
postsynaptic potential (EPSP-IPSP) sequence. At mem-
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Fig. 1 Insulin and pioglitazone treatment effects on the E/I ratio in WT brain slices. a—c Membrane depolarization characteristically leads to regular spiking
of layer IV excitatory neurons. This characteristic is evident in control (WT) slices, and after application of insulin (WT 1), or insulin + pioglitazone (WT I+ P). d
EPSP-IPSP sequence following VB stimulation. At —60 mV, the IPSP does not hyperpolarize below —60 mV (upper trace). The IPSP polarity reverses
at —80 mV, around GABA, receptor reversal potential (lower trace). e 500 nM insulin application results in an increase of IPSP that hyperpolarized below
base line at —60 mV (upper trace). The IPSP is mediated by GABA, receptor, because it reverses at —80 mV (lower trace). f Addition of pioglitazone to
insulin application does not lead to any notable change. g-i Representative records of GABA, receptor- and AMPA receptor-mediated
currents under control, insulin, and insulin + pioglitazone application conditions. HP holding potential. j The averaged AMPA/GABA (E/I)
ratios under the three conditions. Note that insulin application significantly reduces the E/I ratio; addition of pioglitazone does not
change insulin effects alone. k Box and whisker plots showing the population distribution
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EPSP but does not hyperpolarize below - 60 mV (Fig. 1d,
upper trace). The IPSP is reversed in polarity at -
80 mV, suggesting that it is mediated by GABA, recep-
tor with a reversal potential around -70 mV (Fig. 1d,
lower trace).

In WT thalamocortical slices, application of 500 nM
insulin resulted in an increase of IPSP that hyperpolar-
ized below base line at — 60 mV (Fig. 1le, WT I, upper
trace). The IPSP was also mediated by GABA, receptor,
because it reversed at — 80 mV (Fig. le, lower trace). In
order to quantify the changes in E/I ratio, we voltage-
clamped each cell to the reversal potential of GABA
receptors (around -70 mV) and AMPA receptors
(around 0 mV) so that we could record GABA, re-
ceptor- and AMPA receptor-mediated currents (1; 25).
Figure 1g, h are representative records. The averaged
AMPA/GABA (E/I) ratio for control WT mice was
1.67 £ 0.22 (n =11, Fig. 1j, k), while insulin significantly
(p<0.001) reduced the ratio to 0.79+0.07 (n=7,
Fig. 1j, k). To test whether the effect of insulin can be
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further enhanced by insulin receptor sensitizer PIO, we
applied both 500 nM insulin and 10 pM PIO (I+P) to
the in vitro preparation. The results were largely similar
to those obtained with insulin application alone (Fig. 1c,
f, i, j, k). The averaged AMPA/GABA ratio was 0.74 +
0.03 (n =6, Fig. 1j, k), which is about the same as insu-
lin alone (p>0.53). Thus, PIO did not increase the
effect of insulin on GABA 5 receptor-mediated response
in WT slices, suggesting that insulin receptors are satu-
rated by 500 nM insulin.

To investigate the mechanism underlying insulin-
induced increased inhibition, we recorded GABA,
receptor-mediated spontaneous IPSCs (sIPSCs) as shown
in Fig. 2a—c. The cumulative fraction curves of the amp-
litude of sIPSCs (Fig. 2d) show that the amplitude distri-
bution for WT I (medium thickness line) and WT I+ P
(thick line) is shifted to the right (larger amplitude) than
that of no insulin controls (WT, thin line). This indi-
cated that insulin (I) and insulin + PIO (I + P) increased
the amplitude of sIPSCs. The difference between WT I
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Fig. 2 Insulin-induced increased inhibition. a—c Example records of GABA, receptor-mediated sIPSCs. HP holding potential. d Cumulative fraction
curves of the sIPSC amplitudes show that the amplitude distribution for insulin (WT 1) and insulin + pioglitazone (WT | + P) are shifted to the right
(larger amplitude), indicating that both conditions increase the amplitude of sIPSCs compared to no drug controls. e The average amplitude of
sIPSCs is higher with either drug application condition compared to the controls, but not different between the two drug application condi-
tions. f Box and whisker plots showing the population distribution
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and WT I+P curves resulted from the difference in
amplitude distribution. WT I+ P group had less (12%)
larger (>30 pA) sIPSCs and WT I group had (19%) lar-
ger sIPSCs. However, the averaged amplitude of sIPSCs
for WT I and WT I+ P (Fig. 2e, f) showed no significant
difference (p > 0.08), because the averaged amplitude of
sIPSCs of WT I was 22.00 + 0.76 (n = 434) pA, while that
for WT I+P was 20.22 +0.56 (n=319). Both of them
were significantly (p >0.001) larger than the WT group
(15.64 + 0.68 pA, 1 = 320).

Insulin receptors are desensitized in the barrel cortex of
Met-Emx1 mice

Layer IV of barrel cortex excitatory neurons of Met-
EMxI mice also show regular spiking upon membrane
depolarization (Fig. 3a—c). Stimulation of VB induced
mainly an EPSP without a clear cut IPSP in Me-EmxI
mice (Fig. 3d). Isolated AMPA receptor- and GABA,
receptor-mediated currents revealed a relatively smaller
IPSC (Fig. 3g). The averaged AMPA/GABA ratio for
Met-Emx1 mice was 3.53 +0.43 (n =8, Fig. 3j, k), which
is significantly (p <0.001) larger than that of the WT
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mice (1.67 £ 0.22). In contrast to the WT slices, applica-
tion of insulin (Met-Emx1 I) did not change the magni-
tude of GABA, receptor-mediated response (Fig. 3e, h,
j» k). The averaged AMPA/GABA ratio was 3.53 £ 0.42
(n=5) that was just the same as without insulin (p >
0.99). The failure of insulin effect on inhibition may re-
sult from desensitized insulin receptors; thus, we applied
PIO together with insulin (Met I + P). Representative re-
cords (Fig. 3f, i) demonstrated that addition of PIO in-
creased GABA 5 receptor-mediated inhibition so that the
averaged AMPA/GABA ratio was 0.69+0.08 (n=5),
which is significantly (p <0.001) smaller than previous
groups (Fig. 3j, k).

We also recorded GABA, receptor-mediated sIPSCs
in Met-EmxI mice. Representative records (Fig. 4a—c)
showed that the amplitudes of sIPSCs increased only
during application of insulin plus PIO (Fig. 4c). The cu-
mulative fraction curves for Met-Emx1 and Met-Emx1 1
were about the same (Fig. 4d, thin and medium lines).
However, the curve for Met-Emx1 1+P was shifted to
the right, the larger amplitude area (Fig. 4d, thick line).
The averaged amplitude of sIPSCs for Met-EmxI mice
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Met-Emx1  |+P

Cc

1nA
20mv i
50 ms

e

60 mV| IPSP

N
N—

VB

-80 mv

5mv|
100 ms

i
GABA
AMPA
A
VB

H.P.=0mV

H.P.=-70 mV

200 pA
100 ms

==

5
4
3
2
1
o T

Met-Emx1

]
Met-Emx1 1+P

T
Met-Emx1 |




Lo and Erzurumlu Molecular Autism (2018) 9:13

Page 6 of 8

a Met-Emx1 b Met-Emx1 | c Met-Emx1 |+P
HP.=0mV HP.=0mV HP.=0mV
et psgash s, e andamindrdsdd o
20 pA |
d e 500 ms
1. 07
*%% p<0.001
—~ 1
S 0.8 < I | * k%
3 £ 18
@© 0 16
LC 0. 6 — Met 8 14
°>’ —— Met, Insulin o g
=R —— Met, Insulin + PIO 2 1 =
oA 1s)
> o 8
5 g
3 0. 21 2 .
g— 2
0. 0 T T T T T T T T 1 < 0
0 10 20 30 40 50 60 70 80 90 100 Met-Emx1  Met-Emx1 | Met-Emx1 |+P
Amplitude of sIPSCs (pA)
f ié;so_ .
3 : g
2 <0.001
N 5 _8
w30 § o i
[$) b i
=10 [ : | —
o T T
S T T T
< Met-Emx1 Met-Emx1 | Met-Emx1 1+P
Fig. 4 Insulin sensitization-increased inhibition in Met-EMx1 brain slices. a-c Example records of GABA4 receptor-mediated sIPSCs in Met-EMx1
cortical neurons without drug application, and with insulin alone (1) or insulin + pioglitazone (I + P) applications. d Cumulative fraction curves of
the sIPSC amplitudes show a significant shift of the amplitude distribution for insulin + pioglitazone condition compared to no drug treatment
(Met-EMxT) or insulin treatment (Met-EMx1 1) alone. e The average amplitude of sIPSCs is much higher following insulin receptor sensitization with
pioglitazone. f Box and whisker plots showing the population distribution

was 10.10 £ 0.37 pA (n =295, Fig. 4e, f) that was signifi-
cantly (p <0.001) smaller than that of WT mice (15.64 +
0.68 pA). However, application of insulin (Met I) did not
change (p>0.97) the averaged amplitude of sIPSCs
(10.11+0.17 pA, n=470, Fig. 4e, f), suggesting insulin
resistance of GABA, receptor-mediated response. Add-
itional PIO together with insulin remarkably (p < 0.001)
increased the amplitude of sIPSCs to 17.44 + 0.55 pA (n
=235, Fig. 4e, f) that was still smaller (» <0.001) than
WT I+P (2022 +0.56 pA). These suggest that insulin
receptors are desensitized in Met-EmxI mice. The dens-
ity of insulin receptors in Met-Emx] mice may be lower
than that in WT mice.

Discussion

E/I balance in neural circuits is an essential component
of homeostatic synaptic plasticity, which is thought to
restrain cortical network activity to operate at optimal

levels by weakening synaptic efficacy after heightened
activity and increasing it after low levels of activation
[29]. A disturbed E/I balance, particularly in neocortical
circuits, has been proposed and observed in ASD indi-
viduals and in animal models [7, 30, 31].

In neurodevelopmental disorders, failure in neuronal
differentiation [32], defects in neurotransmitter release,
and their postsynaptic receptors [33-35] have been
linked to altered E/I balance. In neocortical circuits, in-
teractions between Gamma-aminobutyric acidergic
(GABAergic) interneurons and glutamatergic pyramidal
neurons that form the corticocortical, callosal, and sub-
cortical connections have been targeted by numerous
studies seeking to unveil the circuit defects in disorders
with cognitive symptoms. GABAergic neurons are a
small population of neocortical residents, but they con-
trol inhibition of the most populous excitatory cortical
neurons. Defects in differentiation of GABAergic
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interneurons, GABAergic synaptic transmission, and
postsynaptic receptors have been the usual suspects in
altered excitability and homeostatic plasticity of neural
circuits.

Met receptor tyrosine kinase is a cell surface receptor
activated by hepatocyte growth factor (HGF). For obvi-
ous reasons, Met and HGF signaling have been exten-
sively studied in the liver. Met is structurally related to
the insulin receptor tyrosine kinase and Met signaling is
essential in regulation of insulin response by hepatocytes
[36]. In fact, a potential therapeutic role for HGF treat-
ment for insulin resistance in type 2 diabetes has been
suggested [36]. A more recent study on cell cocultures
and in knockout mice brings conclusive evidence for
Met regulation of insulin sensitivity [37]. While both
Met and HGF are expressed in a spatiotemporal specifi-
city in the brain (reviewed in [1]), there are no studies
examining any link between Met signaling and insulin
sensitivity in neocortical excitatory neurons and how
lack of it might affect GABAergic synaptic transmission.

In the primary somatosensory cortex of mice, with
inactive autism-associated Met receptor tyrosine ki-
nase, we found that increased excitation is due to de-
creased postsynaptic inhibition mediated via the
GABA, receptors [6]. Altered GABA, receptor func-
tion can directly affect the E/I balance. In transgenic
mice lacking the B3 subunit of the GABA, receptor
(Gabrb3), seizure susceptibility, hypersensitivity, hy-
peractivity, learning, and memory deficits have been
reported [38, 39]. In fragile X mouse models too,
decreased GABA, receptor expression has been ob-
served [40-42]. A potential strategy to ameliorate de-
creased GABA, receptor function is to increase
receptor sensitivity. In cultured hippocampal neuron,
application of insulin increased GABA, receptor-
mediated response [43, 44]. We confirmed this re-
sponse in thalamocortical slices taken from WT mice
[6]. However, in thalamocortical slices from Met-
Emxl mice, insulin application did not change
GABA, receptor-mediated response, suggesting that
there might be insulin resistance in neocortical neu-
rons that lack Met function [6]. In the present study,
we show that insulin resistance of GABA, receptor-
mediated response in Met-Emx] mice can be altered
by insulin sensitization. We find that application of
PIO, a common insulin sensitizer used in diabetes
therapy, can significantly alter the GABA, receptor
response and restore E/I balance to levels of nor-
malcy. At the present time, we do not know how Met
deficiency in excitatory cortical neurons alters recep-
tor desensitization or the intracellular signaling path-
ways involving insulin receptors. Further studies are
needed to investigate these mechanisms in a cell
type-specific manner to determine whether Met

Page 7 of 8

signaling through insulin receptors occurs in similar
ways between the neocortical excitatory neurons and
hepatocytes.

Conclusions

Excitation/inhibition balance is altered in favor of ex-
citation in the primary somatosensory cortex of mice
with inactive autism-associated Met receptor tyrosine
kinase. Altered E/I balance, in favor of excitation, in
the somatosensory cortex of mice with inactive
autism-associated Met receptor tyrosine kinase may
relate to somatic sensory hypersensitivity of children
with ASD to shoes and clothing. We applied insulin
alone and insulin + pioglitazone (PIO) to test the ef-
fects of sensitizing insulin receptors on inhibitory re-
sponses mediated by GABA, receptors in the
thalamocortical circuitry of Emx1°/Met /'°* mice. We
show that PIO can aid in normalization of the E/I
balance in the primary somatosensory cortex, a po-
tential physiological mechanism underlying the posi-
tive effects of PIO treatment in ASD patients. Our
results shed light to the underlying mechanisms and
suggest that decreased GABA, receptor activity is the
major culprit in scaling E/I balance to more excita-
tion and that insulin sensitization can help in read-
justing the balance.
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and y-aminobutyric acid-gated ion channel; Gabrb3: 33 subunit of the
GABA4 receptor; HGF: Hepatocyte growth factor; |+ P: Insulin + pioglitazone;
I: Insulin; IPSC: Inhibitory postsynaptic current; Met: Tyrosine-protein kinase
Met or hepatocyte growth factor receptor; NBQX: 2,3-Dihydroxy-6-nitro-7-
sulfamoyl-benzo(F) quinoxaline, potent AMPA receptor antagonist; NMDA: N-
methyl-D-aspartate; PIO: Pioglitazone; PTX: Picrotoxin; sIPSC: Spontaneous
inhibitory synaptic current; VB: Ventrobasal nucleus of thalamus; WT: Wild
type (B6 mice)
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