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Balanced bifrontal transcranial direct
current stimulation enhances working
memory in adults with high-functioning
autism: a sham-controlled crossover study
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Abstract

Background: Working memory (WM) often is impaired in autism spectrum disorder (ASD). Such impairment
may underlie core deficits in cognition and social functioning. Transcranial direct current stimulation (tDCS) has
been shown to enhance WM in both healthy adults and clinical populations, but its efficacy in ASD is unknown.
We predicted that bifrontal tDCS would improve WM performances of adults with high-functioning autism
during active stimulation compared to sham stimulation and that such enhancement would generalize to an
untrained task.

Methods: Twelve adults with high-functioning ASD engaged in a battery of WM tasks that included backward
spatial span, backward digit span, spatial n-back and letter n-back. While engaged, 40 min of 1.5 mA bifrontal
stimulation was applied over the left and the right dorsolateral prefrontal cortices (DLPFC). Using a single-blind
crossover design, each participant received left anodal/right cathodal stimulation, right anodal/left cathodal
stimulation, or sham stimulation, in randomized counterbalanced order on three separate days. Following tDCS,
participants again engaged in letter and spatial n-back tasks before taking the Brief Test of Attention (BTA). We
used repeated-measures ANOVA to compare overall performance on the WM battery as measured by a composite
of z-scores for all five measures. Post hoc ANOVAs, t tests, Friedman’s tests, and Wilcoxon signed-rank tests were
used to measure the online and offline effects of tDCS and to assess performances on individual measures.

Results: Compared to sham stimulation, both left DLPFC anodal stimulation (t11 = 5.4, p = 0.0002) and right DLPFC
anodal stimulation (t11 = 3.57, p = 0.004) improved overall WM performance. Left anodal stimulation (t11 = 3.9,
p = 0.003) and right anodal stimulation (t11 = 2.7, p = 0.019) enhanced performances during stimulation. Enhancement
transferred to an untrained task 50 min after right anodal stimulation (z11 = 2.263, p = 0.024). The tasks that showed the
largest effects of active stimulation were spatial span backward (z11 = 2.39, p = 0.017) and BTA (z11 = 2.263, p = 0.024).

Conclusions: In adults with high-functioning ASD, active bifrontal tDCS given during WM tasks appears to improve
performance. TDCS benefits also transferred to an untrained task completed shortly after stimulation. These results
suggest that tDCS can improve WM task performance and could reduce some core deficits of autism.
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Background
Many individuals with autism spectrum disorder (ASD)
show impairments in working memory (WM) [1–3].
Working memory refers to the capacity to maintain, up-
date, and manipulate information held in temporary
storage [4]. Poor WM performance has been shown in
children and adolescents with ASD [5–10] and in adults
with ASD [11–13]. Although other executive function
deficits can resolve somewhat with age, WM deficits
tend to persist [3, 14].
Working memory is critical for many complex cognitive

functions including language [15, 16], general intelligence,
and reasoning [17]; therefore, WM deficits likely produce
profound effects in individuals with autism. Poor WM
likely contributes to social problems in people with ASD
[18] because maintaining continually changing social in-
formation in temporary storage (WM) is necessary for
social flexibility [19]. Working memory also drives the
ability to encode emotions observed on faces [20], regu-
late emotional responses [21], and break from restrictive
or repetitive behaviors [22]. Therefore, remediating WM
deficits could improve some of the core cognitive and
behavioral deficits that characterize ASD.
Unfortunately, behavioral approaches to WM remedi-

ation have had limited effects [23], and attempted be-
havioral interventions have suffered from high attrition
rates [24]. It also remains unclear whether improve-
ments that may occur from behavioral remediation
would generalize to other tasks or abilities [25]. There-
fore, a simpler and faster approach to improving WM
deficits might be more useful.
Transcranial direct current stimulation (tDCS) is a

non-invasive form of brain stimulation accomplished by
the passage of a weak electrical current, typically in the
range of 0.5–2.0 mA, through the scalp and skull via
surface electrodes. The bases for tDCS effects have not
been conclusively determined, but tDCS may modulate
neural activity and behavior via several mechanisms, in-
cluding alteration of membrane potentials [26], direct
action at synaptic receptors [27], and downstream effects
on network plasticity [28].
When applied over the dorsolateral prefrontal cortex

(DLPFC), tDCS has enhanced verbal WM in healthy
adults [29–34] and in patients with schizophrenia
[35, 36], Parkinson’s disease [37], stroke [38], aphasia
[39], and depression [40–42]. Anodal tDCS applied to
the left prefrontal cortex in healthy adults has been
shown to increase prefrontal cortex functional connect-
ivity and to strengthen bilateral fronto-parietal networks
[28]. Anodal tDCS to the right prefrontal cortex also has
been shown to strengthen ipsilateral fronto-parietal con-
nectivity and disrupt default mode network integrity
[43], which potentially could be among the mechanisms
for tDCS effects on WM.
Adults with ASD show prefrontal hypoactivation dur-
ing working memory tasks [13, 44]. They also show re-
duced anterior-posterior connectivity [44–46]. Because
WM depends on prefrontal activity [47] and communi-
cation between the DLPFC and posterior parietal re-
sources [48], such deficits may provide at least a partial
explanation for poor WM performance in individuals
with ASD [49].
Therefore, there are both empirical and theoretical

reasons for our primary aim, which is to determine
whether tDCS applied over the prefrontal cortices im-
proves WM in individuals with autism. The choice to
use balanced bifrontal stimulation (F3-F4), rather than
the more typical F3-right supraorbital montage or a uni-
lateral montage, was motivated by several consider-
ations. First, imaging and lesion studies suggest that
WM is domain general [17, 50] and bilateral prefrontal
resources are recruited for many WM tasks [51, 52].
Second, cathodal stimulation’s inhibitory effects on cog-
nition are often weak or nonexistent [53, 54]; and in
tasks that depend on bilateral resources, such effects
may be countered by the effects of contralateral disin-
hibition. Third, balanced bilateral stimulation seems to
distribute current more deeply [55] and broadly [56] and
enhance functional connectivity more than what would
be expected from the summed effects of the two elec-
trodes due to interhemispheric interactions [57], which
might contribute to a greater effect on widely distributed
WM networks. Finally, when directly compared to uni-
lateral montages or unbalanced bilateral montages, bal-
anced bilateral stimulation (dual-hemisphere stimulation
of homologous structures) has been shown to more ef-
fectively enhance motor learning [58, 59] and improve
tactile discrimination [60]. Although no published stud-
ies or meta-analyses have directly compared the effect-
iveness of balanced bifrontal montages with unilateral or
unbalanced bifrontal montages in the enhancement of
WM, Richmond and colleagues [33] referred to pilot
studies that showed that an F3-F4 montage was more ef-
fective than a F3-right supraorbital area montage. Bal-
anced bifrontal montages have been shown to enhance
WM accuracy [33, 35, 39–42, 56] with small to medium
effect sizes in healthy adults [33, 56] and medium to large
effect sizes in clinical populations [35, 39, 40, 42]. Data re-
ported in meta-analyses suggest that unbalanced frontal
stimulation (usually DLPFC-contralateral supraorbital
area) tends to have a small effect on WM accuracy in both
healthy populations [61] and clinical populations [62].
We explored two different active stimulation condi-

tions because it is unknown whether the left or right
DLPFC is a more effective target site for working mem-
ory enhancement in individuals with ASD. WM is not a
monolithic mental function, but many of its sub-
processes are mediated by activity in the lateral
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prefrontal cortex [63, 64]. Therefore, we used a short
battery of WM tasks that require varying degrees of in-
formation maintenance and manipulation, and we used
stimuli from different modalities. We explored an inter-
vention in adults with ASD because WM deficits persist
in ASD [3, 14] and because adults typically have aged
out of behavioral modification programs and are devel-
opmentally stable.
We predicted that (1) applying active tDCS during

WM training would enhance WM performance com-
pared to sham stimulation, (2) material specificity of
effects would not depend on the hemisphere stimulated
by the anode, and (3) after stimulation, enhancement
would transfer to an untrained task with a working
memory component. We used composite z-scores as our
primary outcome to capture overall WM enhancement
across stimulus modalities.

Methods
Participants
The Institutional Review Board of The Johns Hopkins
School of Medicine approved the study, and all partici-
pants gave written informed consent to participate.
Twelve adults who were previously diagnosed with ASD
were recruited from a Baltimore area residential and day
center for adults with ASD. Their ages ranged from 20
to 66 years (M = 32.1; SD 12.4). They included 10 men
and 2 women of whom 10 were Caucasian, 1 was
African-American, and 1 was Asian. All participants had
acquired language during childhood and spoke English
as their first language. Potential subjects were excluded
if their records or subsequent interviews suggested a his-
tory of neurological disease, psychiatric disorder, or ac-
tive use of antipsychotic medications. The participants
had IQ scores that ranged from 71 to 144 (M = 100.1;
SD 23.1) on the Kaufman Brief Intelligence Test [65]
and thus were classified as high functioning [1]. They
had completed 12–21 years of schooling (M = 14.3; SD
3.1). Each study participant underwent a baseline assess-
ment with the Autism Diagnosis Observation Schedule
(ADOS) Module 4 [66], and the group was found to
have a mean communication + social interaction score
of 12.2 (SD 3.0), with scores of 4.2 (SD 1.4) on commu-
nication and 8 (SD 2.1) on social interaction. All partici-
pants met the ADOS cutoff of 7 for a diagnosis of ASD.
All behavioral data were collected in a quiet room at
The Johns Hopkins Hospital.

Test materials and tasks
Letter and spatial n-back
The n-back stimuli were displayed using E-Prime E
Studio (v2.0 Psychology Software Tools, Inc.) on a Dell
Inspiron N5110 with a 15.6-cm screen (diagonal length).
Letter n-back stimuli were pseudo-randomly chosen
from among the 20 consonants of the English alphabet.
Letters were presented in the middle of the screen (10%
screen height) in black bold Helvetica on a white back-
ground. During spatial n-back, a constant 1-cm thick
blue fixation cross was extended to the full width and
height of the screen. Blue rectangles appeared pseudo-
randomly in one of the four quadrants, covering 75% of
the available space in the quadrant. For both letter and
spatial n-back tasks, stimuli were displayed for 500 ms
with a 2000-ms inter-stimulus interval. Participants indi-
cated whether the stimuli were the same or different
than the previous stimuli by pressing buttons on the
keyboard. If participants did not respond within
2500 ms after stimulus onset, a fixation cross appeared,
followed by the next stimulus. The load for each block
increased from 1-back to 2-back to 3-back. At the top of
the screen, a reminder message identified the current
task load, e.g., 2-back. Brief visual instructions were pre-
sented prior to every change in load to show what was
meant by 1-back, 2-back, or 3-back. All participants
completed 3-minute practice blocks that included 12 tri-
als at each load at the beginning of the stimulation
period. On the practice trials, response accuracy feed-
back was provided: The screen flashed green for 50 ms
for a correct response or red for an error or failure to re-
spond within 2500 ms. Participants were told that failure
to respond would be counted as incorrect. During
stimulation, each participant completed one 12-min
block of 198 spatial n-back trials and one 12-min block
of 198 letter n-back trials (each block consisting of 66
trials at loads of 1-, 2-, and 3-back) to assess the online
effects of tDCS. Following the cessation of stimulation,
each participant also completed two 6-min blocks of 102
trials (each with 34 trials at loads of 1-, 2-, and 3-back)
to assess the offline effects of tDCS on WM. N-back ac-
curacy was calculated as (hits + correct negatives)/(total
items). The n-back tasks are depicted in Fig. 1.

Wechsler Memory Scale, 3rd Edition (WMS-III)
The WMS-III digit span backward and spatial span
backward tasks were administered as per the test manual
[67]. Briefly, participants repeated strings of digits in
reverse order for digit span backward and tapped a se-
quence of blocks on a board in reverse order for spatial
span backward. Forward digit span and forward spatial
span tasks were omitted.

The Brief Test of Attention (BTA)
The BTA was given as per the instruction manual [68]
except that each participant received only one form (i.e.,
either numbers or letters) as determined by computer-
generated random number assignment. Participants
listened to 10 strings of letters and numbers (e.g., F-3-7-
R-4-2-Q) and were required to ignore the numbers (or



Fig. 1 Letter and spatial n-back task procedures
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letters) and to continually rely on working memory to
update a tally of how many letters (or numbers) were
read aloud in each string. The raw score is the total
number of correctly tallied strings, ranging from 0 to 10.
All items in the subtest were administered regardless of
performance.

Stimulation side-effect questionnaire
On a 16-item side effects questionnaire that we devel-
oped based on references to side effects in the literature
[69–71], participants rated their experiences of head-
ache, difficulty with concentration, discomfort, fatigue,
pain, tingling, nausea, anxiety, anger, confusion, happi-
ness, sadness, tension, fear, alertness, and vision changes.
Participants circled a number on a Likert scale ranging
from 0 to 10 (0 = absent; 10 = most extreme). Subjects
were given this questionnaire before and after each tDCS
session. At the end of the questionnaire given after each
session, the participants were asked to indicate (yes/no)
whether they thought that they had just received real
stimulation [72].

tDCS stimulation parameters
Transcranial direct current stimulation was delivered by
a neuroConn DC-stimulator PLUS (http://www.neuro-
caregroup.com/dc_stimulator_plus.html). In all condi-
tions, two flat carbon rubber electrodes (surface area
25 cm2) encased in saline-soaked sponges were placed
over F3 and F4 using the 10–20 international electrode
positioning system. The electrodes were secured evenly
over the scalp with 1-in. wide rubber straps: One strap
was parallel to the horizontal plane and the second strap
was anchored to the first strap and arched over F3 and
F4. Electrode sponges were aligned so that the bottom
sides were parallel with the strap wrapped around the
horizontal plane. The active stimulation conditions
were designated according to the location of the anodal
electrode for the sake of brevity, not to imply that the
anode was more important than the cathode or that
their effects would be distinguished from one another.
There were three conditions:

1) Left anodal: The anode was over F3 and the cathode
over F4. Stimulation was ramped up from 0 to
1.5 mA on a sinus curve for 15 s, held constant
at 1.5 mA (current density = 0.06 mA/cm2) for
39.5 min, and ramped back down to 0 mA on a
sinus curve for 15 s.

2) Right anodal: The anode was over F4 and the
cathode over F3. Stimulation was ramped up from
0 to 1.5 mA on a sinus curve for 15 s, held constant
at 1.5 mA (current density = 0.06 mA/cm2) for
39.5 min, and ramped back down to 0 mA on a
sinus curve for 15 s.

3) Sham: The anode was over F3 and the cathode over
F4. Stimulation was ramped up from 0 to 1.5 mA on
a sinus curve for 15 s, held constant at 1.5 mA for
30 s, and ramped back down to 0 mA on a sinus
curve for 15 s.

Procedures
The sequence of procedures is indicated in Fig. 2.
In a 3-session crossover design, participants were ran-

domly assigned via computerized random number gen-
erator to one of six groups with order of condition
counterbalanced (left anodal, right anodal, sham). Group

http://www.neurocaregroup.com/dc_stimulator_plus.html
http://www.neurocaregroup.com/dc_stimulator_plus.html


Fig. 2 Experimental protocol. All participants completed the same protocol on three separate days. They received either left anodal stimulation,
right anodal stimulation, or sham stimulation in counterbalanced order
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sizes were evenly balanced. Participants were given the
KBIT-2 [65] prior to session 1. Before each tDCS ses-
sion, they were scanned in a Siemens 3 T MRI for
13 min (results not reported here, but see [73]). There-
after, the tDCS device was affixed and participants com-
pleted the side-effects questionnaire prior to stimulation.
During stimulation, participants engaged in 8 min of test
explanations and practice, followed by digit span back-
ward and spatial span backward tasks, 12 min of letter
n-back problems, and 12 min of spatial n-back problems.
After the 40-min period of active or sham stimulation
ended, participants again completed the side-effects
questionnaire and the tDCS apparatus was removed.
Then, following an approximately 40-min interval during
which resting-state fMRI data again were collected, par-
ticipants completed the offline n-back tasks, as described
above, followed by the BTA. Other than stimulation pa-
rameters, the protocol was identical in all three sessions.
Sessions were separated by a mean of 6.8 (5.1) days, with
a minimum washout of 24 h between sessions. Testing
was single blind; the participants were not aware of the
test conditions, although the technicians were.

Analyses
With a one-way repeated measures design, we tested our
hypothesis that tDCS would enhance overall WM per-
formance during and after active stimulation compared
to sham stimulation by examining performance on a
cognitive test battery. As our primary outcome mea-
sures, we computed composite z-scores for each partici-
pant. One reason that composite z-scores were used in
the primary analysis was because the number of partici-
pants was suboptimal with regard to power, and the
participants were anticipated to vary widely in IQ and
education. Composite z-scores are an effective tool to
evaluate performance on a battery of tests that recruit
resources from a common cognitive domain [74–76]
because they increase statistical power by attenuating
floor and ceiling effects, they reduce random variability,
and they lower the number of correlated data in analyses
[77]. Participants’ raw scores were transformed to z-scores
using all 36 data points (12 participants × 3 sessions)
obtained for each test. The full-battery composite z-score
was the mean of the participant’s z-scores for all five
working memory tests: WMS-III spatial span backward
(longest length), WMS-III digit span backward (longest
length), verbal n-back accuracy (mean of online and off-
line scores), spatial n-back accuracy (mean of online and
offline scores), and BTA (raw score). We also computed
an online composite z-score for the four online mea-
sures of working memory and an offline composite z-
score for the three offline measures (see Figs. 2 and 3e),
based on the fact that BTA performance requires a sig-
nificant working memory component (updating). Mea-
sures of working memory capacity and accuracy were
chosen, rather than reaction time, because those mea-
sures have been correlated with behaviors related to core
deficits in autism [20–22] and because tDCS tends to
enhance accuracy more than reaction time in clinical
populations [78]. The main effect of stimulation on overall
WM performance (full-battery composite z-score) was an-
alyzed with repeated-measures ANOVA, with stimulation
condition as the independent factor, followed by post hoc,
paired-sample t tests. We compared the online composite
z-scores across conditions with repeated measures
ANOVA and post hoc, paired-sample t tests. We com-
pared the offline composite z-scores across conditions
with Friedman’s and Wilcoxon signed-rank tests because
the data were not normally distributed (Shapiro-Wilk,
p = 0.045). For secondary analyses, we examined the ef-
fects of active vs. sham stimulation on individual WM
measures in native space using repeated measures
ANOVA and post hoc t tests or with Friedman’s and Wil-
coxon signed-rank tests. We also tested the effectiveness
of blinding study participants to the stimulation condi-
tions as measured by self-report. All analyses were con-
ducted using the Statistical Package for the Social
Sciences (SPSS) for Windows, Version 22.0 (SPSS Inc.,
Chicago, IL, USA). Effect sizes for paired-sample t tests
were Cohen’s ds = mean difference/pooled SD. Effect sizes
for Wilcoxon signed-rank tests were r = z/√(2*N). For the
purpose of comparing the effects reported here to those in
other studies, we provided Cohen’s ds effect sizes for all
significant analyses.



Fig. 3 (See legend on next page.)
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(See figure on previous page.)
Fig. 3 a z-scores for individual tests and composite z-scores. Composite z-score (online) is the mean of four z-scores: spatial span backward
maximum length, digit span backward maximum length, online letter n-back accuracy, and online spatial n-back accuracy. Composite z-score
(offline) is the mean of three z-scores: offline letter n-back accuracy, offline spatial n-back accuracy, and BTA raw score. Composite z-score (full
battery) is the mean of five z-scores: spatial span backward maximum length, digit span backward maximum length, letter n-back accuracy
(mean of online and offline percentages), spatial n-back accuracy (mean of online and offline percentages), and BTA raw score (*p < 0.05,
**p < 0.01, ***p < 0.001). b Backward spatial span, backward digit span, and Brief Test of Attention task results. Error bars indicate standard
deviations. (*p < .05). c N-back accuracy. Percentage correct for online spatial n-back, online letter n-back, offline spatial n-back, and offline
letter n-back. Error bars indicate standard deviations. d Individual differences in full-battery composite z-scores (vs. sham) for left anodal and
right anodal stimulation. Mean composite z-scores (full battery) were −0.25 (SD 0.71) for sham stimulation, 0.13 (SD 0.82) for left anodal stimulation,
and 0.11 (SD 0.81) for right anodal stimulation
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Results
Primary outcome: overall WM performance
As shown in the final row of Table 1, the composite z-
scores (full battery) were −0.25 (SD 0.71) for sham
stimulation, 0.13 (SD 0.82) for left anodal stimulation,
and 0.11 (SD 0.81) for right anodal stimulation, which
repeated measures ANOVA showed to be significantly
different (F2,22 = 12.85, p = 0.0002). Post hoc, paired-
sample t tests revealed that performances associated
with both left anodal active stimulation (t11 = 5.4,
p = 0.0002) and right anodal active stimulation
(t11 = 3.57, p = 0.004) were better than performances
associated with sham tDCS. For composite z-scores
(full battery), Cohen’s ds effect sizes were 0.50 for left
anodal stimulation and 0.47 for right anodal stimula-
tion. There was no difference in overall WM perform-
ance between the two active stimulation conditions
(t11 = 0.26, p = 0.796). To assess the role of session
order on full-battery composite z-scores, we compared
them across sessions. We found composite z-scores
(full battery) of −0.03 (SD 0.81) for session 1, −0.06 (SD
0.75) for session 2, and 0.09 (SD 0.83) for session 3. Re-
peated measures ANOVA showed no significant prac-
tice effects across sessions (F2,22 = 0.88, p = 0.428).
The composite z-scores (online) were −0.25 (SD 0.74)

for sham stimulation, 0.15 (SD 0.87) for left anodal
stimulation, and 0.09 (SD 0.81) for right anodal stimu-
lation, which repeated measures ANOVA showed to be
significantly different (F2,22 = 7.68, p = 0.003). Post hoc,
paired-sample t tests revealed that performances as
measured by composite z-scores of the four working
memory tests given during both left anodal active
stimulation (t11 = 3.9, p = 0.003, Cohen’s ds = 0.52) and
right anodal active stimulation (t11 = 2.7, p = 0.019,
Cohen’s ds = 0.46) were better than performances dur-
ing sham stimulation. Performances during the two ac-
tive stimulation conditions (t11 = 0.60, p = 0.563) were
not significantly different.
The composite z-scores (offline) were −0.18 (SD 0.92)

for sham stimulation, 0.09 (SD 0.77) for left anodal
stimulation, and 0.09 (SD 0.93) for right anodal stimula-
tion, which Friedman’s test showed to be significantly
different (χ2 = 7.17, p = 0.028). Follow-up Wilcoxon
signed-rank tests showed that after left anodal stimula-
tion performances were not significantly better com-
pared to after sham stimulation (z = 1.88, p = 0.06,
r = 0.27, Cohen’s ds = 0.33), but performances after
right anodal stimulation were significantly better than
after sham stimulation (z = 2.35, p = 0.019, r = 0.34,
Cohen’s ds = 0.30). Although performances after right
anodal stimulation were marginally better than after left
anodal stimulation, the difference was not significant
(z = 1.49, p = 0.136).

Secondary outcomes: individual WM measures
Mean (SD) scores for each of the five measures that
made up our overall WM composite are presented in
Table 1. As shown in the first row, the participants’ lon-
gest backward spatial span was 4.8 (SD 0.9) blocks dur-
ing sham stimulation compared to 6.2 (SD 1.8) blocks
during left anodal stimulation and 6.0 (SD 0.9) blocks
during right anodal stimulation. Friedman’s test showed
that these differed significantly (χ2 = 9.24, p = 0.010).
Post hoc Wilcoxon signed-rank tests indicate that left
anodal stimulation (z11 = 2.21, p = 0.027, r = 0.32) and
right anodal stimulation (z11 = 2.39, p = 0.017, r = 0.34)
were both associated with longer maximum spans than
sham stimulation. Cohen’s ds effect sizes were 1.03 for
left anodal stimulation and 1.39 for right anodal stimula-
tion. Performances during the two active stimulation
conditions were not different (z11 = 0.30, p = 0.762). We
examined the role of practice effects on all tests for
which significant differences were found between stimu-
lation conditions. Participants’ longest spatial span was
5.6 blocks (SD 1.2) during session 1, 5.5 blocks (SD 1.1)
during session 2, and 5.9 blocks (SD 1.8) during session
3. Friedman tests showed no significant practice effects
across sessions (χ2 = 0.05, p = 0.973).
Also as shown in Table 1, participants’ longest back-

ward digit span averaged 5.3 (SD 1.5) digits during sham
compared to 5.5 (SD 1.6) digits during left anodal and
5.4 (SD 2.0) during right anodal stimulation. Friedman’s
test showed no significant differences in longest digit
span between conditions (χ2 = 0.41, p = 0.814).
Spatial n-back accuracy was calculated as (hits + cor-

rect negatives)/(total items). Online n-back accuracy was



Table 1 Behavioral data and statistics: Composite z-score (online) is the mean of four z-scores: spatial span backward maximum
length, digit span backward maximum length, online letter n-back accuracy, and online spatial n-back accuracy. Composite z-score
(offline) is the mean of three z-scores: offline letter n-back accuracy, offline spatial n-back accuracy, and BTA raw score. Composite
z-score (full battery) is the mean of five z-scores: spatial span backward maximum length, digit span backward maximum length,
letter n-back accuracy (mean of online and offline percentages), spatial n-back accuracy (mean of online and offline percentages),
and BTA raw score. Also included are means and standard deviations for 1-back, 2-back, and 3-back for letter and spatial n-back,
both online and offline

Sham Left anodal Right anodal Repeated measures
ANOVA F(2,22)

Friedman’s
Test χ2

p value

WMS-III, spatial span backward, longest span (blocks) 4.8 (0.9) 6.2 (1.8) 6.0 (0.9) 9.24 0.01

WMS-III, digit span backward, longest span (digits) 5.3 (1.5) 5.5 (1.6) 5.4 (2.0) 0.12 0.891

Spatial n-back accuracy (online) 62.4% (25.0%) 68.6% (22.1%) 66.7% (23.2%) 3.17 0.205

1-back 74.7% (23.1%) 80.0% (19.9%) 79.6% (21.4%)

2-back 61.4% (27.9%) 68.5% (26.4%) 66.2% (25.5%)

3-back 49.7% (25.8%) 55.6% (22.9%) 52.7% (25.0%)

Letter n-back accuracy (online) 69.6% (30.2%) 76.2% (22.5%) 76.3% (26.8%) 0.5 0.779

1-back 77.3% (26.6%) 82.9% (19.9%) 84.8% (21.7%)

2-back 70.4% (32.4%) 76.0% (26.0%) 76.2% (29.3%)

3-back 61.1% (33.1%) 69.7% (24.2%) 68.1% (29.7%)

Composite z-score (online) −0.25 (0.74) 0.15 (0.87) 0.09 (0.81) 7.68 0.003

Spatial n-back accuracy (offline) 63.9% (24.9%) 70.6% (20.9%) 67.7% (24.2) 0.55 0.758

1-back 76.2% (21.9%) 85.1% (20.2%) 78.4% (21.7%)

2-back 63.2% (29.0%) 70.5% (24.3%) 69.8% (26.8%)

3-back 52.5% (26.5%) 56.3% (21.8%) 54.6% (26.0)

Letter n-back accuracy (offline) 72.3% (29.8%) 78.5% (22.5%) 76.5% (25.9%) 0.17 0.92

1-back 80.7% (23.2%) 86.1% (20.7%) 84.3% (21.6%)

2-back 71.1% (33.2%) 77.8% (22.3%) 77.8% (27.2%)

3-back 65.1% (33.6%) 71.6% (26.2%) 67.4% (30.0)

Brief Test of Attention (offline) 6.8 (2.5) 7.4 (2.2) 7.9 (2.5) 7.09 0.029

Composite z-score (offline) −0.18 (0.92) 0.09 (0.77) 0.09 (0.93) 7.17 0.028

Spatial n-back accuracy combined
(mean of online and offline percentages)

63.2% (24.7%) 69.6% (20.7%) 67.3% (23.6%) 0.67 0.717

Letter n-back accuracy combined
(mean of online and offline percentages)

71.0% (29.8%) 77.4% (22.1%) 76.4% (26.3%) 0.17 0.92

Composite z-score (full battery) −0.25 (0.71) 0.13 (0.82) 0.11 (0.81) 12.85 0.0002
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62.4% (SD 25.0%) during sham stimulation, 68.6% (SD
22.1%) during left anodal stimulation, and 66.7% (SD
23.2%) during right anodal stimulation. Friedman’s test
showed no significant differences between conditions
(χ2 = 3.17, p = 0.205). Offline spatial n-back accuracy
was 63.9% (SD 24.9%) after sham stimulation, 70.6%
(SD 20.9%) after left anodal stimulation, and 67.7% (SD
24.2%) after right anodal stimulation, which were not
significantly different (χ2 = 0.55, p = 0.758).
Letter n-back accuracy was calculated as (hits + cor-

rect negatives)/(total items). Online n-back accuracy
was 69.6% (SD 30.2%) during sham stimulation, 76.2%
(SD 22.5%) during left anodal stimulation, and 76.3%
(SD 26.8%) during right anodal stimulation. These were
not significantly different (χ2 = 0.5, p = 0.779). Offline
letter n-back accuracy was 72.3% (SD 29.8%) after
sham stimulation, 78.5% (SD 22.5%) after left anodal
stimulation, and 76.5% (SD 25.9%) after right anodal
stimulation. These also were not significantly different
(χ2 = 0.17, p = 0.920).
Brief Test of Attention (BTA) raw scores averaged 6.8

(SD 2.5) after sham stimulation compared to 7.4 (SD
2.2) after left anodal and 7.9 (SD 2.5) after right anodal
stimulation. We found the predicted main effect of
condition on BTA performance with Freidman’s test
(χ2 = 7.09, p = 0.029). Follow-up Wilcoxon signed-rank
tests revealed that BTA performance after left anodal
stimulation was not significantly different from BTA per-
formance after sham stimulation (z11 = 1.63, p = 0.102,
r = 0.24, Cohen’s ds = 0.27), but BTA performance after



van Steenburgh et al. Molecular Autism  (2017) 8:40 Page 9 of 15
right anodal stimulation was better than after sham
(z11 = 2.26, p = 0.024, r = 0.33, Cohen’s ds = 0.46).
Additionally, BTA performance was better after right
than left anodal stimulation (z11 = 2.45, p = 0.014,
r = 0.35, Cohen’s ds = 0.22). There was no effect of
practice on BTA performance from session 1 to session
3 (z11 = −1.12, p = 0.265). The results of our secondary
analyses are depicted in Fig. 3a–c.

Blinding
We hypothesized that participants would tolerate tDCS
and remain blind to condition. All participants com-
pleted the three sessions with no adverse events. After
each session, all 12 participants were asked to indicate
(yes/no) whether they thought they had received real
stimulation. Eleven participants endorsed left anodal
stimulation as real, nine endorsed right anodal stimula-
tion as real, and 10 endorsed sham as real. McNemar’s
test of related samples showed no differences in en-
dorsement rates between sham and both left (p > 0.99)
and right (p > 0.99) active anodal stimulation.

Discussion
In this study, the effects of tDCS on some WM tasks are
among the largest in the literature. Meta-analyses of
attempts to enhance working memory have typically
shown smaller enhancing effects of anodal stimulation at
F3 in both healthy adults and clinical populations [61,
62]. We observed a Cohen’s ds of 0.50 for full-battery
WM performance (as measured by composite z-scores)
associated with left anodal stimulation compared to
sham stimulation and 0.47 for right anodal stimulation
compared to sham stimulation. The measures on which
we observed the largest significant effects of tDCS were
backward spatial span (ds = 1.33) and the Brief Test of
Attention (ds = 0.46). These effect sizes are similar in
magnitude to those reported in other investigations of
balanced bifrontal stimulation to enhance WM [33, 39–42].
Although enhanced performance was not significant
on some individual WM tasks in the battery, group
performance associated with either type of active
stimulation was at least equal to and in most cases,
better than sham on all tasks (see Fig. 3a) and most of
the participants showed improved composite z-scores
in both active conditions (see Fig. 3d).
The larger than typical effect sizes reported here could

be attributed to several factors. WM deficits in individ-
uals with ASD might provide more room for improve-
ment than in healthy adults. Also, we used a balanced
bifrontal montage, which not only capitalizes on the dir-
ect effects of anodal stimulation but also likely combines
them with the effects of contralateral disinhibition, as
well as a tendency to recruit additional aspects of work-
ing memory networks [57]. Additionally, stimulation was
delivered during WM performance, which seems to
produce the most consistent effects [61]. Finally, our
participants received active tDCS at a current density
of 0.06 mA/cm2 for 40 min. This is twice as long as it
has been typical of behavioral studies, although periods
of 30 min and longer [32, 38, 40, 41, 79–83] are be-
coming common in recent years, especially in studies
of cognition. Longer stimulation periods seem to more
effectively modulate WM [62], current density greater
than 0.029 mA/cm2 is positively correlated with
greater effects on WM [62], and total charge delivered
is positively correlated with effect size in studies of
cognition [78].
Two characteristics of tDCS are particularly intriguing

when considering its potential for cognitive enhance-
ment: (1) its functional resolution and (2) its broad
distribution of current. Functional resolution is the
tendency of tDCS to alter synaptic plasticity preferen-
tially in networks that are undergoing task-related ac-
tivity during stimulation [84–86]. Broad distribution of
current has been demonstrated via electroencephalog-
raphy [87, 88], fMRI [28, 89–92], and positron emis-
sion tomography [92], all of which have been used to
show that tDCS alters cortical activity both beneath
the electrodes and in more remote regions. Our two
current flow simulations suggested that with the bal-
anced bifrontal montage, current flow is not limited to
the DLPFC, but is broadly distributed to prefrontal
cortical regions as well as to subcortical regions via
white matter tracts (see Fig. 4). Wide current distribu-
tion and functional resolution could be particularly
advantageous for WM enhancement given the broad
topology of WM networks and heterogeneous etiolo-
gies of WM dysfunction.
The broadly distributed current and functional reso-

lution of tDCS prompt us to consider several possible
mechanisms of action rather than restricting ourselves
to the oversimplified view that the enhancement of WM
found in this study is due solely to improved mainten-
ance and manipulation of information driven by neuro-
modulation of the DLPFC.
TDCS also may have increased attentional control of

WM by improving top-down signaling from the pre-
frontal cortex. Functional MRI studies of healthy adults
show a diffuse WM network characterized by core atten-
tional control nodes in bilateral DLPFC [93]. When WM
demand is low, individuals with ASD and typically devel-
oping controls both rely on bottom-up parietal processes
to direct external attention. As loads increase, prefrontal
activity increases in typically developing controls but not
persons with ASD, suggesting a failure to exert sufficient
top-down control of attentional resources [49]. In ASD,
reduced anterior-posterior connectivity [44, 45] likely
contributes to the PFC’s poor integration with the rest of



Fig. 4 a Simulation of 1.0 mA current flow with an F3 anodal-F4 cathodal montage from Soterix TDCS Explore. Maximum field intensity is 0.25 V/m.
Current is disbursed throughout the frontal cortex. b Simulation of 1.0 mA current flow with an F3 anodal-F4 cathodal montage from http://
neuralengr.com/bonsai/. Maximum field intensity is 0.306 V/m. Current flows throughout frontal cortex and penetrates to subcortical areas

van Steenburgh et al. Molecular Autism  (2017) 8:40 Page 10 of 15
the WM network. Anodal tDCS over DLPFC can
strengthen anterior-posterior connectivity in dorsolateral-
parietal attentional networks [28, 43], which may have
temporarily improved attentional control mediated by the
PFC. Also, Park and colleagues [94] showed that following
a stroke, 30 min of anodal stimulation over left DLPFC
enhanced subsequent performance on the Auditory Con-
tinuous Performance Test, a test of attention and response
control on which individuals with ASD do poorly [95].
Our finding of enhancement on a task with both working
memory and attentional components (BTA) further
supports improved attentional control as a potential
mechanism for performance enhancement.
Another possible benefit of tDCS could be improved

emotional regulation mediated by the right DLPFC [96],
which is hypoactive in ASD [46]. Better emotional con-
trol could help participants combat frustration as WM
loads increase [97] and resist the effects of stress [98].
Enhanced PFC integration with the rest of the WM net-
work may also improve the ability to suppress irrelevant
information [99] and ignore interference [100].
Yet another possibility is that tDCS improves vigilance.
Using the same balanced bifrontal montage, Nelson and
colleagues [101] showed enhanced vigilance on an air
traffic control simulator as measured by better discrim-
ination (A’) following left anodal stimulation compared
to sham. Executive control of vigilance has been linked
to the right PFC for easier tasks and to bilateral PFC for
more difficult tasks. Here, we found that both left and
right anodal stimulation improved overall WM and that
BTA performance improved after right compared to left
anodal stimulation. The errorless BTA performance of a
few participants, even after sham stimulation, suggests
that this task was less demanding than the others, which
could explain the relatively greater benefit of right vs.
left anodal stimulation.
Current flow simulations and studies using fMRI [102]

indicate that during balanced bifrontal stimulation,
current passes through the anterior cingulate. The anter-
ior cingulate cortex is activated for many types of execu-
tive function tasks, including vigilance, performance
monitoring, and error avoidance. Individual variability in

http://neuralengr.com/bonsai
http://neuralengr.com/bonsai
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WM dysfunction and the theorized functional resolution
of tDCS suggest that the same tDCS montage could
strengthen response inhibition in one person, improve
response monitoring in another, and improve vigilance
in a third person.
Given traditional assumptions of an excitatory role for

anodal stimulation and an inhibitory role for cathodal
stimulation, as well as previous research suggesting right
anodal stimulation of the DLPFC is less effective [61],
the finding that both active bifrontal montages were
similarly effective in enhancing performance may seem
counter-intuitive. There is growing evidence that the ca-
nonical assumptions of anodal excitation and cathodal in-
hibition beneath the electrodes are often violated [53, 54].
Also, direction of current flow may begin to matter less as
amperage increases from 1 to 2 mA [103], which would
suggest that the montages are more equivalent in their ef-
fects at areas more remote from the electrodes, such as
the anterior cingulate. Several of the potential mecha-
nisms for enhancement described in the preceding para-
graphs could be triggered by either left anodal stimulation
or right anodal stimulation. For example, both bifrontal
montages could have increased anterior-posterior con-
nectivity that is typically reduced in working memory net-
works [44, 49, 104], and both montages would have
passed current through the anterior cingulate, which is
desynchronized from other aspects of working memory
networks [105] and which shows abnormal activity related
to attentional and executive control in individuals with
ASD. Finally, right anodal stimulation also may have ame-
liorated the poor emotional regulation typically driven by
right prefrontal hypoactivity in ASD.
The findings reported here are limited in several ways,

which may inform improvements in future approaches.
First, given that mean scores on the BTA approached
the maximum for this test, ceiling effects might have ob-
scured the benefit of active tDCS on BTA performance.
A more difficult version of this task might yield a better
estimate of effect size. Also, some higher-functioning
participants showed ceiling effects on n-back accuracy
rates, even at 2-back and 3-back, while lower-performing
participants showed improvements with stimulation.
Stimulation may enhance performance only when recipi-
ents are working near capacity. Thus, future investigations
could titrate participants’ n-back load until previously
specified performance criteria are met [33, 106]. It is also
likely that the 50-min delay between the end of stimula-
tion and the start of offline performances allowed for the
effects of stimulation to diminish, so immediate offline
effects of stimulation may be larger than those reported
here. Although the 8-min practice time ensured that all
outcomes were measured after sufficient stimulation
had been delivered to alter synaptic plasticity [26, 107],
the additive impact of tDCS duration on cognitive
performance is unknown. Some studies show increasing
effects with longer periods of stimulation [62, 108], while
others show that longer periods of stimulation can shrink
or even reverse effects [109]. Overall, task order did not
predict effect size; the largest effects of stimulation were
on the second task (spatial span backward) and the last
task (BTA). The mean intersession interval was 6.8 (5.1)
days, but for two participants, the interval was only 24 h.
Although the effects of tDCS (relative to sham) on ac-
quired motor skills and other learning have been shown to
persist for months or longer with repeated training [106,
110, 111], we are not aware of any studies that show a
single session of tDCS continuing to alter behavior or sec-
ondary measures of neural activity, such as regional cere-
bral blood flow, blood oxygenation, or neurotransmitter
release, more than 24 h after stimulation ends. However,
findings in the TMS literature have demonstrated hyper-
plasticity in individuals with ASD, such that motor cortical
plasticity endures 2–3 times longer than in healthy con-
trols [112, 113]. Although the combination of a 40-min
stimulation period and ASD hyperplasticity could increase
the possibility of carryover effects of active stimulation,
offline effects would still not be expected to persist to the
next day and affect subsequent performance. Also, with
multiple active conditions, intersession intervals should
ideally be standardized to at least 1 week to avoid meta-
plasticity that has been shown to endure for at least 24 h
in individuals with ASD who receive theta-burst stimula-
tion [113]. Similar effects have also been observed in re-
peated tDCS to enhance working memory, with training
gains smaller when stimulation sessions are separated by a
24-h interval compared to a 3-day interval [106]. The ef-
fects of both hyperplasticity and metaplasticity could have
reduced power; hyperplasticity could have carried over to
subsequent sham performance and metaplasticity could
have attenuated the effects of next-day stimulation. Such
effects would likely diminish differences between active
stimulation and sham. Although washout period did not
predict changes in composite z-scores between sessions
with the same order of conditions, the possibility of an
interaction between condition and washout period cannot
be precluded because of insufficient power to detect even
a large effect.
Our results are novel in several ways. To our know-

ledge, this is the first demonstration of tDCS as a tool to
enhance WM in individuals with ASD, which is important
because WM deficits likely contribute to impairments of
more complex cognitive processes and social behavior in
those individuals. This also is the first report of tDCS-
mediated enhancement of spatial WM using a balanced
bifrontal montage. In addition, our administration of
tDCS for 40 min is the longest reported period of bifrontal
tDCS. Recent reviews suggest that spatial WM is more
impaired than verbal WM in individuals with ASD [2],
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which may explain why we found larger effects of pre-
frontal tDCS on spatial WM performance than have previ-
ously been reported in healthy adults [100, 114].
Finally, we found that the beneficial effects of tDCS on

subsequent performance persisted for at least 50 min
after stimulation, which is the longest delay between
stimulation and an offline effect of stimulation on WM-
driven task performance of which we are aware. Previ-
ously, offline effects on subsequent WM task performance
have been found to persist for as long as 30–40 min
[32, 36, 38, 115] after stimulation. Clearly, longer follow-
up monitoring is needed to assess effect persistence after
stimulation and to attempt more enduring facilitation of
WM with repeated sessions of stimulation and training.
It is also worth noting that persisting offline effects of
tDCS transferred to another test with a working memory
component on which participants did not train during
stimulation. This is consistent with previous findings of
near transfer [29, 33, 85, 116, 117]. Future experiments
should explore transfer from laboratory-based tasks to
applied cognitive and social skills that enhance quality
of life.

Conclusions
We found that a balanced bifrontal tDCS montage can en-
hance both online and offline WM performance in adults
with high-functioning autism. The largest effects were on
spatial span and BTA performance. Left anodal stimulation
and right anodal stimulation both enhanced WM, with ef-
fects ranging from small to large. Material-specific effects
of anodal stimulation were not observed over either hemi-
sphere. As hypothesized, online stimulation effects trans-
ferred to an untrained offline task with a working memory
component, but enhancement (compared to sham) reached
significance after right anodal stimulation only.
In summary, our pilot study suggests that tDCS shows

promise as a method to enhance WM in adults with
high-functioning ASD. Further studies are needed to
replicate these effects in a larger sample and determine
if repeated stimulation can produce lasting effects that
transfer to real-world skills.
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