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Abstract

Background: CHD8 (chromodomain helicase DNA-binding protein 8), which codes for a member of the CHD
family of ATP-dependent chromatin-remodeling factors, is one of the most commonly mutated genes in autism
spectrum disorders (ASD) identified in exome-sequencing studies. Loss of function mutations in the gene have also
been found in schizophrenia (SZ) and intellectual disabilities and influence cancer cell proliferation. We previously
reported an RNA-seq analysis carried out on neural progenitor cells (NPCs) and monolayer neurons derived from
induced pluripotent stem (iPS) cells that were heterozygous for CHD8 knockout (KO) alleles generated using CRISPR-
Cas9 gene editing. A significant number of ASD and SZ candidate genes were among those that were differentially
expressed in a comparison of heterozygous KO lines (CHD8+/−) vs isogenic controls (CHD8+/−), including the SZ and
bipolar disorder (BD) candidate gene TCF4, which was markedly upregulated in CHD8+/− neuronal cells.

Methods: In the current study, RNA-seq was carried out on CHD8+/− and isogenic control (CHD8+/+) cerebral organoids,
which are 3-dimensional structures derived from iPS cells that model the developing human telencephalon.

Results: TCF4 expression was, again, significantly upregulated. Pathway analysis carried out on differentially expressed
genes (DEGs) revealed an enrichment of genes involved in neurogenesis, neuronal differentiation, forebrain
development, Wnt/β-catenin signaling, and axonal guidance, similar to our previous study on NPCs and monolayer
neurons. There was also significant overlap in our CHD8+/− DEGs with those found in a transcriptome analysis carried
out by another group using cerebral organoids derived from a family with idiopathic ASD. Remarkably, the top DEG in
our respective studies was the non-coding RNA DLX6-AS1, which was markedly upregulated in both studies; DLX6-AS1
regulates the expression of members of the DLX (distal-less homeobox) gene family. DLX1 was also upregulated in
both studies. DLX genes code for transcription factors that play a key role in GABAergic interneuron differentiation.
Significant overlap was also found in a transcriptome study carried out by another group using iPS cell-derived
neurons from patients with BD, a condition characterized by dysregulated WNT/β-catenin signaling in a subgroup of
affected individuals.
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Conclusions: Overall, the findings show that distinct ASD, SZ, and BD candidate genes converge on common molecular
targets—an important consideration for developing novel therapeutics in genetically heterogeneous complex traits.

Keywords: DLX6-AS1, Distal-less homeobox, Gabaergic, Cancer, Autism, Schizophrenia, Bipolar disorder, TCF4, HMGA2,
ZNF132, Wnt, Beta-catenin

Background
Chromodomain helicase DNA-binding protein 8 (CHD8)
has emerged as a top ASD candidate gene from multiple
exome-sequencing studies [1–4]. Loss of function muta-
tions in the gene have also been found in schizophrenia
(SZ) and intellectual disabilities [4–6]. CHD8 is a ubiqui-
tously expressed member of the CHD family of ATP-
dependent chromatin-remodeling factors that play
important roles in chromatin dynamics, transcription, and
cell survival [7–11]. Previous studies have shown that
CHD8 protein negatively regulates Wnt signaling by inter-
acting with β-catenin: Wnt/β-catenin signaling plays a
critical role in normal brain development and has been
implicated in bipolar disorder (BD), SZ, ASD, and cancer
[4, 10, 12–23]. The effect of CHD8 on the growth of can-
cer cells appears to be due, in part, to an interaction with
p53 [24]. CHD8 also recruits MLL histone methyltransfer-
ase complexes to regulate cell cycle genes [25] and binds
to the chromatin insulator CTCF [25, 26]. Recent work
also shows that CHD8 and other CHD chromatin remo-
delers regulate embryonic stem cell transcriptional pro-
grams by targeting specific nucleosomes that flank
nucleosome-free promoter regions [9].
Based on these observations, we have been studying the

effects of CHD8 on human neurons and neural progenitor
cells (NPCs) using CHD8+/− lines generated in isogenic-
induced pluripotent stem (iPS) cells by CRISPR-Cas9 gene
editing [8]. Other investigators have been studying the
effect of CHD8 on neuronal cells using RNA interference
(RNAi) [27–29]. These studies have focused primarily on
analyzing downstream targets of CHD8 in order to identify
differentially expressed genes (DEGs). This is a particularly
useful strategy for studying ASD and SZ candidate genes
that function as regulators of gene expression, in order to
find converging pathways that could connect many differ-
ent genetic risk factors into more manageable common
molecular subgroups—an idea that could facilitate drug
discovery. ASD and SZ candidate genes that code for gene
expression regulators (e.g., transcription factors and
chromatin-remodeling complexes) represent, along with
genes that code for synaptic proteins, calcium channels,
potassium channels, and the HLA (MHC) locus, the major
categories of validated candidate genes in these conditions
[4, 30–33]. Molecular genetic convergence has previously
been demonstrated for some candidate genes. For ex-
ample, the SZ and BD candidate gene MIR137 has been

found to target other candidates: CSMD1, C10orf26,
CACNA1C, and TCF4 [34]. In addition, clinically dis-
tinct disorders can be caused by the same risk genes,
suggesting that therapies aimed at specific molecular
targets could have a therapeutic effect across diagnos-
tic categories [4, 35].
The molecular studies that have targeted CHD8 cer-

tainly support the concept of converging molecular tar-
gets and pathways. In shRNA knockdown studies and
chromatin immunoprecipitation using NPCs, neural
stem cells (NSCs), and SK-N-SH neuroblastoma cells,
downregulation of CHD8 predicted a disruption of gene
networks involved in neurodevelopment and resulted in
altered expression of a significant number of other ASD-
risk genes [3, 27–29].
Similarly, in our recently published study, a significant

number of previously characterized ASD and SZ candi-
date genes were found to be differentially expressed in
CHD8+/− NPCs and neurons, compared with isogenic
controls [8], and furthermore, DEGs were found to over-
lap with the downstream targets of several other SZ and
ASD candidate genes that code for transcription factors
or chromatin regulators, including TCF4, EHMT1, and
SATB2 [6, 8, 36–38]. This suggests that CHD8 not only
has a direct effect on gene expression but has indirect
effects as well. We also found that DEGs were enriched
for pathways that affect the extracellular matrix (ECM),
cell adhesion, neuron differentiation, neuron projection,
synaptic transmission, axonal guidance signaling, and
WNT/β-catenin and PTEN signaling. In addition, genes
involved in head circumference were found to be differ-
entially expressed. This is notable because loss of func-
tion CHD8 mutations are associated with large head
circumference, a finding that has been experimentally
validated in a zebrafish model [2, 3].
Our previous study was carried out using NPCs and a

monolayer neuronal culture system consisting of a fairly
heterogeneous array of neurons expressing forebrain,
midbrain, and hindbrain markers. Recently, several neur-
onal differentiation methods have emerged that are more
suitable for SZ and ASD, one of which is the direct con-
version of iPS cells into 3-dimensional cerebral orga-
noids, which resemble a first trimester developing
telencephalon [39–41]. This is particularly appropriate
for studying neurodevelopmental disorders that are
associated with cognitive dysfunction. We have also
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demonstrated that the organoid system is ideal for study-
ing gene × environment interactions relevant to neuro-
psychiatric and neurodevelopmental disorders [39].
The few studies that have been carried out so far using

cerebral organoids as a model system have been reveal-
ing. Mariani et al., for example, showed that genes
involved in cell proliferation, neuronal differentiation,
synaptic assembly, and GABAergic inhibitory neuron de-
velopment were differentially expressed in an idiopathic
ASD family [42]. And, using a somewhat different orga-
noid differentiation protocol, Lancaster et al. showed
that cerebral organoids derived from patients with
CDK5RAP2 loss of function variants and microcephaly
have premature neuronal differentiation [41].
Accordingly, we have expanded our transcriptome

analysis of CHD8 target genes in cerebral organoids de-
rived from CHD8+/− iPS cells and isogenic controls. The
DEGs reported here validate many of the findings in our
previous analysis in NPCs and monolayer neuronal cul-
tures. In particular, we show that CHD8 haploinsuffi-
ciency again leads to a substantial increase in TCF4
expression [8]. In addition, significant overlap was found
with the DEGs previously identified in the Mariani et al.
study, which was carried out using subjects with idio-
pathic ASD in whom the responsible genetic variant
could not be unequivocally characterized [42]. The long
non-coding antisense RNA DLX6-AS1, a regulator of
GABAergic interneuron development [43], was the top
DEG in both. Considering the genetic heterogeneity
found in ASD and SZ, the molecular convergence on
DLX6-AS1 between CHD8 and an uncharacterized ASD-
causing genetic variant is striking.

Methods
Development of iPSCs from skin fibroblasts
We have been developing iPS cells from controls and
patients with 22q11.2 del diagnosed with SZ or schizoaf-
fective disorder [44]. One of the male control samples
was used to generate the CHD8+/− lines. The control
was recruited from the Albert Einstein College of Medi-
cine (AECOM). The study and consent forms were
approved by the AECOM Institutional Review Board
(IRB). Consent was obtained by a skilled member of the
research team who had received prior human subjects
training. iPSC lines were generated from fibroblasts ob-
tained from skin biopsies performed by board-certified
physicians. The procedure for growing fibroblasts in
preparation for reprogramming into iPS cells is detailed
in Additional file 1: Supplemental methods.

Generating CHD8 KO lines
CHD8+/− lines were developed by introducing a
CRISPR-Cas9 vector containing CHD8 guide sequences
into iPS cells by nucleofection [8]. The procedure is

described in detail in Additional file 1: Supplemental
methods.

Cerebral organoid differentiation
The protocol is adapted from Mariani et al. [40]. Briefly,
iPS cell colonies were maintained on matrigel in
mTesr1. To induce cerebral organoid differentiation, iPS
cells were pretreated with 50 μM Y27632 in mTesr1 for
1 h at 37 °C. Wells were rinsed with DMEM/F12, and
iPS cell colonies were dissociated with accutase for
10 min at 37 °C. Cells were rinsed with DMEM/F12 and
collected and counted for aggregate formation. Follow-
ing the Stem Cell Technologies protocol, 3.0 × 106 cells
were used to create 10,000 cell aggregates using an
AggreWell™ plate. For the first 6 days, aggregates were
cultured in mTesr1 supplemented with 500 ng/ml DKK-
1, 1.5 μg/ml BMPRIA-Fc, and 10 μM SB431542. On day
6, aggregates were removed from the AggreWell™ plate,
according to the Stem Cell Technology protocol, and
transferred to a 24-well ultra-low attachment plate. On
day 18, 1% N2 supplement was added to the medium.
On day 25, aggregates were plated onto a 4-well cham-
ber slide coated with 10 μg/ml polyornithine, 2.5 μg/ml
laminin, and 50 μg/ml fibronectin, and cultured in Neu-
robasal medium supplemented with 2% B27 and 2 mM
L-glutamine until day 50. Organoids were detached, and
RNA was extracted. Organoids are composed of a mix-
ture of GABAergic and glutamatergic neurons, and
radial glia progenitor cells, and have gene expression
profiles that resemble a first trimester telencephalon
(Additional file 2: Figure S1) [39, 40, 45]. For immuno-
histochemistry (IHC), samples were fixed with 4% para-
formaldehyde and 25% sucrose, and then embedded in
O.C.T (optimal cutting temperature) (see Additional file 1:
Supplemental methods for IHS methodology).

RNA-seq
Total RNA was isolated using the miRNeasy kit (Qiagen)
according to the manufacturer’s instructions. We obtained
101 bp paired-end RNA-seq reads from an Illumina HiSeq
2500 instrument. Adapters and low quality bases in reads
were trimmed by trim_galore (http://www.bioinformatics.-
babraham.ac.uk/projects/trim_galore/). We employed
Kallisto (v0.42.5) [46] to determine the read count for each
transcript and quantified transcript abundance as tran-
scripts per kilobase per million reads mapped (TPM),
using gene annotation in the GENCODE database (v18)
[47]. Then we summed the read counts and TPM of all al-
ternative splicing transcripts of a gene to obtain gene ex-
pression levels. We restricted our analysis to 12,898
expressed genes with an average TPM >1 in either wild
type or CHD8+/− samples. DESeq2 [48] was used to iden-
tify DEGs (false discovery rate (FDR) <0.05). The software
DAVID (v6.8 Beta) [49, 50] was used for Gene Ontology
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(GO) analysis, with the 12,898 expressed genes as back-
ground. Ingenuity pathway analysis (IPA) (https://
www.qiagenbioinformatics.com/) was used for canonical
pathway analysis, using the ingenuity knowledge base
(genes only) as background. The RNA-seq data have been
deposited in Gene Expression Omnibus (GEO: accession
number GSE85417).

Quantitative real-time PCR (qPCR)
qPCR was carried out on reverse transcribed PCR using
the 2−ΔΔCt method as previously described [51, 52]. A de-
tailed description and the primers used for this analysis
can be found Additional file 1: Supplemental methods.

ASD/SZ-risk gene sets
For ASD, we compared our DEG list with the following
ASD gene sets: SFARI [https://gene.sfari.org/autdb/
GS_Home.do] (genes scored as high confidence, to min-
imal evidence and syndromic); AutismKB (core dataset)
[53]; a set of high-confidence ASD genes (Willsey_ASD)
[54]; genes predicted by whole exome sequencing and
co-expression network analysis (Liu_ASD) [55]; candi-
date genes with de novo mutations from massive whole
exome sequencing (Iossifov_ASD) [56]; and candidates
from the same dataset focusing on a combination of de
novo and inherited mutations resulting in a high-
confidence list (FDR < 0.1) (DeRubeis_ASD) [57]. The
two SZ gene lists were from the SZ gene database [58]
and a recent genome-wide association study (GWAS) re-
port (SZC GWAS) [33]. These gene lists can be obtained
from our previous publication [8].

Comparison of CHD8+/− DEGs with idiopathic ASD organoids
The DEG list from CHD8+/− organoids was compared to
the DEG lists generated from idiopathic autism patient-
specific organoids described by Mariani et al. [42]. The lat-
ter were obtained from two developmental stages, after 11
and 31 days of terminal differentiation (TD11 and TD31).

Comparison of CHD8+/− DEGs with BD patient-derived
neurons
DEG lists from Mertens et al. [59] were derived from
the file “GSE58933_Jun_All_Data.txt.gz” in the GEO
“GSE58933” record. For a comparison with our CHD8
KO samples, we applied the same criteria used in the
original study for identifying DEGs (log2 (fold change)
≥1 and p ≤ 0.05).

Statistics
To determine if DEGs overlapped with or were signifi-
cantly enriched with a specific gene set, 12,893
expressed genes in our samples were used as back-
ground for Fisher’s exact test. Statistics tests were con-
ducted in R (http://www.R-project.org/). Common genes

between two gene lists were input to DAVID (beta 6.8)
for GO term analysis.

Results
RNA-seq was carried out on cerebral organoids derived
from CHD8 KO iPS cells; two isogenic controls (CHD8+/+)
and four heterozygotes (CHD8+/−). The CHD8+/− samples
contain a CHD8 KO allele with either a 10-base pair dele-
tion (clones A, B, and C) or a 2-base pair deletion (D),
both of which lead to frameshift mutations and premature
stop signals in exon 1 [8]. The KO lines were derived from
CHD8+/+A; the other control, CHD8+/+B, was a different
iPS cell clone from the same subject. We previously
showed that heterozygous KO leads to a ~50% reduction
in CHD8 protein [8]. Similarly, quantitative immunohis-
tochemistry showed a 54% decrease in CHD8 immu-
noreactivity in CHD8+/− compared with CHD8+/−

organoids (analyzed in 15 random fields, p = 7.2E-13)
(Additional file 2: Figure S1).
The RNA-seq data quality is shown in Additional file 3:

Table S1. A total of 12,893 expressed genes were detected,
and DESeq2 was used to identify DEGs, as described in
detail in the “Methods” section. Using a cutoff of
FDR < 0.05, there were 559 DEGs when the CHD8+/+

organoids were compared with CHD8+/−; 288 genes
increased in the KO, 271 decreased. The DEGs sepa-
rated our sample into two groups, as seen in the heat
map shown in Fig. 1a. The entire list of DEGs is in
Additional file 4: Table S2. CHD8 mRNA itself was
not significantly differentially expressed based on our
RNA-seq analysis. The KO allele, however, showed a
much lower level of expression than the WT allele in the
organoids (Additional file 1), probably due to nonsense
mediated decay. Overall, though, the decrease in CHD8
mRNA was not proportional to the decrease in CHD8
protein, similar to our observations in NPCs [8]. The rela-
tively imprecise correlation between mRNA and protein
levels is found for many genes and can be due to a num-
ber of factors [60]. However, the mechanism of the dis-
crepancy between CHD8 mRNA and protein is not
known and will require further investigation.
We should also point out that among the three CHD8

alternatively spliced transcripts in the GENCODE anno-
tation, the two containing the exon 1 accounted for 70
~ 80% of the CHD8 transcripts in the WT organoids
and 60–70% in the CHD8+/−, based on our RNA-seq
data (Additional file 1).
Of the 559 DEGs, 203 have CHD8 binding sites in

their promoters, using data from a ChIP-seq study car-
ried out on NPCs by Sugathan et al. (see Additional file 4:
Table S2, column I) [28]. The finding that such a large
fraction of DEGs are direct targets of CHD8 confirms the
validity of our RNA-seq findings. However, it also shows
that many downstream genes are indirect targets of
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CHD8, most likely through the actions of other genes cod-
ing for transcription factors and chromatin-remodeling
proteins that are directly affected by CHD8, such as TCF4,
POU3F2, SMARCA4, SOX2, and PAX6. This result is con-
sistent with our previous report [8].
The software DAVID was used to identify enriched GO

pathways in DEGs using 12,893 expressed genes as back-
ground [49]. IPA was used for canonical pathways and dis-
ease association. The top GO terms (Biological Process,
(BP)) for genes that were upregulated in the CHD8 KO
organoids were nervous system development, neurogenesis,
neuron differentiation ,and forebrain development; the top
GO:BP terms for downregulated genes were nervous sys-
tem development, generation of neurons, and neuron dif-
ferentiation (Fig.1b, c; Additional file 5: Table S3). Genes
coding for components of the ECM were the top cellular
component (CC) GO terms for upregulated DEGs, and
among the top eight for downregulated DEGs, similar to
our previous findings using monolayer neurons [8]. The
top enriched IPA canonical pathways were Wnt/β-catenin
signaling and axonal guidance for upregulated genes and
axonal guidance for downregulated genes. An enrichment
of DEGs involved in Wnt/β-catenin signaling is similar to
that found in our previous transcriptome analysis on
CHD8+/− NPCs and neurons [8], as well as findings
by other investigators [10, 20, 24], firmly establishing
that altered expression of CHD8 disrupts this critical
signaling pathway.
As a complementary analysis, we also applied TopHat

and DESeq2 for aligning the RNA-seq reads and for DEG
analysis, respectively, as we previously carried out [8]. This
resulted in 811 DEGs (Additional file 4: Table S2 sheet 2),
534 of which were included in the DEG list from Kallisto/
DESeq2 analysis. GO analysis showed an enrichment of
similar GO terms in the two DEG lists, with “neuron

system development” being the top term for both upregu-
lated and downregulated genes (Fig. 1).
Overall, the findings show that CHD8 directly, or in-

directly through effects on other transcription factors
and chromatin regulators, regulates a program of gene
expression that affects critical aspects of brain develop-
ment (e.g., neurogenesis, neuron differentiation, and
axonal guidance).

Comparison between organoid data and NPCs and
monolayer neurons
We compared current transcriptome data with our pre-
vious study using NPCs and monolayer neurons [8].
There is a significant overlap between the studies, with
nearly 50% of DEGs in organoids showing differential
expression in NPCs and neurons (neurons odds ratio
[OR] = 2.88, p < 2.2E-16; NPCs OR = 4.44, p < 2.2E-16,
Fisher’s test) (Fig. 2; see Additional file 4: Table S2 for
overlapping genes). The top GO terms for overlapping
genes were neuron differentiation and neurogenesis, re-
spectively, which is consistent with the main pathway
findings in organoids described above.

Organoids

Neurons

NPCs

409

1875
369

291

49 139
80

Organoids vs NPCs

OR = 4.44, p < 2.2e-16

Top GO term: 

Neuron differentiation 

(35 genes of 129 genes)

Organoids vs Neurons

OR = 2.88, p < 2.2e-16

Top GO term: 

Neurogenesis 

(74 genes of 219 genes)

Fig. 2 Overlapping DEGs in organoids compared with NPCs and
monolayer neurons from previous study [8]

a b c

Fig. 1 Heat map and summary of GO terms and pathways. a The heat map shows differentially expressed genes between controls (CHD8+/+) and
heterozygous knockouts (CHD8+/−). Enriched GO terms by DAVID (top) and pathways by IPA (bottom) for upregulated (b) and downregulated (c)
genes in CHD8+/− organoids. P values were corrected by the Benjamini method [147]
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qPCR validation
We validated several RNAs of interest by qPCR using
the 2−ΔΔCt relative expression method: SOX2, PAX6,
TCF4, CNTNAP2, HMGA2, RELN, MEG3, DLX6-AS1,
and CRNDE (Fig. 3). These genes were chosen because
of their known importance in brain development and
disease. SOX2 and PAX6 code for transcription factors
that influence neural stem cell growth and brain devel-
opment [60, 61]. TCF4 codes for a transcription factor;
both common and rare variants have been implicated in
the etiology of SZ, BD, ASD, and developmental delay
[34, 36, 37, 62]. CNTNAP2 codes for a member of the
neurexin family of presynaptic proteins; it too has been
implicated in the pathogenesis of SZ and ASD [63–67].
HMGA2 codes for a non-histone DNA-binding protein
that has been implicated in regulating brain growth and
head circumference; increased expression was found in
our previous transcriptome analysis [8, 68]. RELN codes
for reelin, a key secreted ECM protein involved in neur-
onal migration during brain development [69–72]. Altered
expression has been found in SZ and ASD [72–77]. As
seen in Fig. 4, reelin is expressed throughout the orga-
noids, in fields of neurons as well as in the zone of prolif-
erating radial glia progenitors found in these structures
[39, 40, 42]. MEG3 is a maternally expressed imprinted
gene that acts as a tumor suppressor gene in a number of
malignancies [21, 78–82]. DLX6-AS1 and CRNDE will be

discussed below. qPCR analysis validated the RNA-seq
findings for each of these genes.

Top DEGs and overlap with organoid transcriptome in
idiopathic ASD
Two of the top three DEGs in CHD8+/− cerebral
organoids were DLX6-AS1 and DLX1, which increased
~39 and 13-fold respectively (Additional file 4: Table S2).
They were hardly expressed in controls. DLX6-AS1
(also known as EVF2) forms a complex with DLX1
and DLX2 proteins that subsequently regulates
GABAergic interneuron development by increasing
DLX5 and DLX6 gene expression [43, 83–86]. Strik-
ingly, in a study by Mariani et al., DLX6-AS1 was also
the top DEG in a transcriptome analysis carried on day
11 cerebral organoids derived from members of a family
with idiopathic ASD, and the 6th top DEG in day 31 orga-
noids [42]. DLX1 was differentially expressed at both time
points as well.
In addition to DLX6-AS1, among the top 15 DEGs in

CHD8+/− cerebral organoids, 11 were also DEGs in the
Mariani et al. study in either or both of their day 11 and
day 31 organoids, and the direction of change was the
same (Table 1). This included genes involved in brain
development, several of which have been implicated in
ASD, including FZD8, PAX6, SLC1A3, EOMES (TBR2),
and MPPED1.
Aside from the top DEGs, overall, there was a signifi-

cant overlap in DEGs between our CHD8+/− organoids
and idiopathic ASD day 11 and day 31 organoids in the
Mariani et al. study (Fig. 5; Additional file 6: Table S4).
Similarly, significant overlap was detected in a compari-
son of DEGs from our previous study on NPCs and
monolayer neurons with idiopathic ASD organoids. The
most significant overlap was found in the comparison
between CHD8+/− organoids and day 31 organoids from
the Mariani et al. study, which showed that 23% of DEGs
were the same (131/560; OR = 5.04; p = 1.34E-40). The top
GO terms for overlapping genes were nervous system de-
velopment, neuron differentiation, and neurogenesis for
day 11 and day 31 organoids (Additional file 6: Table S4).
Although the degree of overlap is impressive, a key dif-

ference in our respective studies is that FOXG1 was a
top, upregulated DEG in the idiopathic ASD organoids,
but not in the CHD8+/− samples; reducing FOXG1 by
RNAi rescued the over-abundance of GABAergic inter-
neurons found in the idiopathic ASD organoids [42].
Conversely, TCF4, a major DEG in all of our CHD8+/−

samples, was not differentially expressed in the idio-
pathic ASD organoids. This suggests that unique expres-
sion changes can occur in key genes despite the
extensive overlap in transcriptomes, which could con-
ceivably limit the full therapeutic impact of novel drugs
that target common pathways.

Fig. 3 Validation of selected DEGs by qPCR. The RNA samples used
in the RNA-seq were used for this analysis. Samples were analyzed in
triplicate as described in “Methods” section and Additional file 1:
Supplemental methods. Significant differences between control and
KO are denoted by an asterisk (*). The p values derived by Student’s t
test were as follows: SOX2, 0.047; TCF4, 0.004; HMGA2, 0.00005; PAX6,
0.02; RELN, 0.02; CNTNAP2, 0.04; DLX6-AS1, 0.0001; MEG3, 0.00002
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CHD8 haploinsufficiency and WNT-β-catenin signaling
WNT/β-catenin signaling is a key pathway in the devel-
oping brain that is dysregulated in neuropsychiatric dis-
orders, as well as in various cancers [4, 10, 12–23].
Thus, the finding that CHD8 binds to β-catenin, inhibiting
its transcriptional effects, [10, 20] is relevant to the role of
CHD8 in both neuropsychiatric and neurodevelopmental

disorders, as well as cancers. Recently, however, CHD8
was shown to be a positive regulator of WNT/β-catenin
signaling in human NPCs [87]. Among the neuropsychi-
atric disorders, WNT/β-catenin is particularly relevant to
BD because lithium salts, which are used to treat the con-
dition, inhibit GSK3β, which would be expected to result
in an increase in β-catenin levels (constitutive GSK3β

Table 1 Top 15 DEGs in CHD8+/− vs idiopathic ASD cerebral organoids

CHD8+/− Log2FC Padj Log2FC_11 FDR Log2FC_31 FDR

DLX6-AS1 5.34 3.85E-86 4.72 1.70E-75 4.61 7.03E-37

ARMCX1 −2.48 4.47E-34 NS NS NS NS

DLX1 3.84 5.97E-32 2.14 1.38E-11 1.35 8.69E-03

FZD8 2.21 1.17E-26 1.19 2.35E-04 NS NS

CPNE6 3.55 1.47E-24 NS NS NS NS

PAX6 2.03 2.05E-22 NS NS 1.29 2.23E-04

SLC1A3 1.61 2.05E-22 1.13 9.21E-06 NS NS

EOMES 3.10 9.04E-22 2.96 1.85E-17 2.79 1.17E-06

MPPED1 2.92 3.31E-21 1.57 4.50E-05 1.41 7.29E-03

COL25A1 2.67 4.42E-21 NS NS NS NS

SCGN 3.22 9.46E-20 2.15 1.25E-06 1.37 1.57E-02

STK17B 2.08 9.46E-20 NS NS NS NS

LIX1 2.14 8.70E-19 NS NS 0.83 2.53E-02

BCL11B 1.63 7.21E-18 0.95 4.85E-02 2.16 2.36E-12

SHISA2 2.14 2.29E-17 1.41 1.58E-06 NS NS

Top 15 DEGs in CHD8+/− are shown in left columns with fold change (FC) and p value adjusted for genome-wide significance (padj). The right columns show the
FC and false discovery rate (FDR) values for the same genes, derived from the Mariani et al. study [42]. Log2FC_11 is from day 11 cerebral organoids, while log2FC_31 is
from day 31 organoids. Note that DLX6-AS1 was the top DEG in day 11 organoids and the 6th top DEG in day 31 organoids

Fig. 4 Immunohistochemistry. RELN and the neuronal marker NeuN were visualized as described in Additional file 1: Supplemental methods. The
DAPI+ tubular structures are zones of proliferating radial glia progenitors. NeuN+ cells are fields of neurons surrounding the radial glia progenitors
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activity leads to β-catenin degradation) [88–92]. With
these considerations in mind, as well as our finding
that WNT/β-catenin signaling is the top pathway for
upregulated DEGs in CHD8+/− organoids (Fig. 1b, c),
we compared our DEG list with those found in a recent
study by Mertens et al. in which transcriptome analyses
were carried out in iPS cell-derived neurons from BD pa-
tients who were clinically responsive or not responsive to
lithium [59]. In addition, we also evaluated the DEG list
derived from NPCs and monolayer neurons from our pre-
vious study, which also showed that WNT/β-catenin was a
top pathway among DEGs in monolayer neurons [8]. Using
the same criteria for defining DEGs in the Mertens et al.
study (log2 fold change ≥1 and p ≤ 0.05), significant overlap
was found in each comparison (Fig. 6; Additional file 7:
Table S5). Note that only 30–50% of DEGs in the Mertens
et al. study were expressed in our organoids, which is
probably due to differences in the differentiation pro-
tocols used. However, the most significant overlap
(p ≤ 5.73E-23; OR = 4.64) occurred in the comparison
between our CHD8+/− DEGs and the lithium non-
responders in Mertens et al. (Interestingly, DLX6-AS1
and DLX1 were in this group of overlapping DEGs;
Additional file 7: Table S5).
The top GO terms for overlapping genes were similar for

both the Li non-responder and Li responder vs CHD8+/−

organoid DEGs; nervous system development, neuron dif-
ferentiation, and neurogenesis (Additional file 7: Table S5).
However, one GO term found exclusively in the former
was axonogenesis. Although lithium is extremely useful in

a substantial proportion of BD patients, it is also used on
occasion to treat patients diagnosed with SZ and ASD, es-
pecially as adjunctive therapy for those with a mood com-
ponent and for refractory patients to augment the effect of
anti-psychotic medications [88, 93–98]. Although there
was a greater association to the lithium non-responder
group, considering that there is significant overlap
with the lithium-responder group as well could have
therapeutic implications.

ASD and SZ candidates in CHD8+/− DEGs
The protein-coding DEGs were considered for their
over-representation of SZ and ASD candidate genes
using a variety of sources, as described in the “Methods”
section and our previous study [8]. As seen in Fig 7,
among the CHD8+/+ vs CHD8+/− DEGs, there was sig-
nificant enrichment of ASD candidate genes in the
SFARI, AutismKB, and Willsey ASD datasets, and an
even more significant enrichment of SZ candidates in
the SZGene and SZ GWAS lists (see Additional file 8:
Table S6 for complete list). Enriched GO terms were
identified for the overlapping genes in three of these
datasets: SFARI, AutismKB, and SZ GWAS. The top GO
terms for SFARI and AutismKB were similar; forebrain
development, telencephalon development, and pallium
development were the most significant (Additional file 8:
Table S6). For the SZ GWAS data set, the top GO terms
for overlapping genes were somatodendritic compart-
ment, synapse, neuron projection, cell body, and axon.
The differences between the ASD and SZ sets of over-
lapping genes reflect the observation that CHD8 hap-
loinsufficiency is a risk factor for both groups of
conditions and suggest that disruption of different mo-
lecular pathways is involved in the increased risk and
differences in clinical presentation.

DEGs involved in head circumference/brain volume
Patients with loss of function CHD8 mutations typically
have large head circumferences, a finding confirmed in a
zebrafish model [2, 3]. In our previous study, 7 out of 12
genes (TESC, DDR2, HMGA2, SBNO1, FAT3, BCL2L1,
and MSRB3) implicated in brain size in genome-wide
association studies were differentially expressed in
CHD8+/− NPCs and neurons [8, 68, 99, 100]. How-
ever, among these genes, only HMGA2 (high mobility
group AT-hook 2) expression was similarly affected in
CHD8 KO organoids. In addition, one gene, DCC
(deleted in colorectal carcinoma), which was not dif-
ferentially expressed in the previous study, was sig-
nificantly decreased in CHD8+/− organoids. Both the
HMGA2 and DCC gene loci have CHD8 binding sites
[28]. The findings show unequivocally that HMGA2
expression is regulated by CHD8.
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34
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10p

Fig. 5 Overlap in DEGs between CHD8 and idiopathic ASD
organoids. CHD8 KO DEGs were compared with DEGs from day 11 and
day 31 organoids (TD11, TD31) derived from individuals with idiopathic
ASD [42]. The number in each panel shows the number of overlapping
genes, which can be seen in Additional file 5: Table S4. The numbers in
parentheses are the odds ratios. Color represents p value from Fisher’s test
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ncRNAs
In addition to DLX6-AS, there were 19 other non-coding
RNAs (ncRNAs) that were differentially expressed in
CHD8+/− organoids (Table 2), of which 9 are CHD8 tar-
gets based on published ChIP findings [28]. Several of
the differentially expressed ncRNAs we detected have
been implicated in neuropsychiatric disorders. One is
the RMST locus, which contains a microRNA involved
in forebrain development through its modulation of
WNT/β-catenin signaling and has been found to
regulate neurogenesis through an interaction with
SOX2 [13, 101]. Another is MIAT (also known as
GONAFU); RNA levels were found to be expressed at

higher levels in parvalbumin GABAergic interneurons
in SZ subjects [102] and have been found to regulate
fear-related anxiety traits in mice [103]. MIAT also
binds to several splicing factors and may affect spli-
cing of the SZ-associated ERBB4 and DISC1 genes in
response to neuronal activation [104]. Finally, CRNDE
expression is significantly elevated in iPS cell-derived
neurons from patients with SZ who have 22q11.2 de-
letions [105]. Although the molecular effects of most
ncRNAs have not been determined, many function at
the gene expression level through their regulation of
chromatin architecture and nuclear organization,
which, if disrupted, could potentially alter neurodeve-
lopmental molecular programs [43, 82, 104, 106–111].

Discussion
One of the most interesting characteristics of CHD8 is
its diverse effect on several neuropsychiatric and neuro-
developmental disorders and cancer. Although ASD and
cancer differ fundamentally in a key aspect regarding
loss of function CHD8 mutations and disease in that the
former are due to germline mutations, while the latter
are usually somatic, it is not surprising that a chromatin
and transcriptional regulator like CHD8 would play a
role in both types of conditions. Indeed, in recently pub-
lished pathway network analyses and sequencing studies,
overlap was found for several ASD candidate genes and
cancer [30, 112]. Correspondingly, germline mutations
in NF1, which cause neurofibromatosis type I, often dis-
play autistic-like behaviors [113, 114]. The molecular
genetic overlap suggests that some novel cancer therapies
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red dot shows the number of overlapping genes, which can be found
in Additional file 7: Table S6
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currently being developed, especially those that target the
epigenome might be beneficial in treating subgroups of
individuals with neurodevelopmental disorders [112, 115].
The mechanisms by which loss of function CHD8 mu-

tations increase cancer risk are likely to be multifactor-
ial. Part of the effect appears to be due to the direct
interaction between CHD8 protein with β-catenin and
p53, and an effect on the cell cycle [2, 24, 25]. An effect
mediated by β-catenin is given additional support by our
transcriptome analysis. In addition, based on our find-
ings, CHD8 may also contribute to malignant transform-
ation indirectly through its effects on other genes, which
were found to be differentially expressed in this study
and have been implicated in malignant transformation,
such as SMARCA4, POU4F1, ARMCX1, HMAG2, DCC,
and ZNF132 (Additional file 4: Table S2) [116, 117]. Sev-
eral of the differentially expressed ncRNAs we show on
Table 2 have also been found to be associated with can-
cer development, including TERC, which codes for the
RNA component of telomerase; telomere shortening is a
feature of malignant transformation and aging [118].
MEG3, as noted above, CRNDE, LINC00340, and RMST
(rhabdomyosarcoma 2 associated transcript) is also
found in various cancers [118–124]. These findings sug-
gest that the effect of CHD8 on malignant transformation
is multifactorial and not simply due to a direct interaction
with the Wnt/β-catenin signaling pathway.

Similarly, the role of CHD8 on neuropsychiatric and
neurodevelopmental disorders is multifactorial, with both
direct effects on downstream targets, such as β-catenin,
and indirect effects mediated by dysregulated expression
of other transcription factors and chromatin remodelers.
The best example of this is the SZ and BD candidate gene
TCF4, which codes for a basic helix-loop-helix transcrip-
tion factor [125]. CHD8 haploinsufficiency leads to a ~2-
fold increase in TCF4 expression in cerebral organoids
and NPCs and neurons (Additional file 4: Table S2) [8]. In
addition, pathway analysis showed extensive overlap
with TCF4 targets, and CHD8 binds to the TCF4
gene locus [8, 28]. An increase in TCF4 expression
has also been found in iPS cell neurons and fibro-
blasts derived from SZ patients [126, 127]. In addition,
TCF4 is upregulated by loss of function mutations in the
SZ candidate MIR137, and overexpression in the fore-
brain of mice leads to cognitive impairments and def-
icits in pre-pulse inhibition [128–130]. Overall, the
findings strongly suggest that TCF4 and CHD8 co-
operate to influence neuronal differentiation and brain
development, and that TCF4 overexpression is a key
feature in SZ and BD.
On the other hand, loss of function TCF4 mutations

have been found in patients with Rett syndrome-like
phenotypes [131, 132], ASD [133] and Pitt–Hopkins
syndrome, which is characterized by ASD, intellectual

Table 2 Differentially expressed ncRNAs

Gene_name Gene_type NPC_binding Log2FC Padj

DLX6-AS1 antisense 0 5.34E + 00 3.85E-86

EMX2OS antisense 0 1.10E + 00 3.79E-02

LINC00340 lincRNA 1 −7.78E-01 1.54E-04

TERC lincRNA 0 −1.07E + 00 1.18E-03

CRNDE lincRNA 1 −9.63E-01 1.39E-02

MEG3 lincRNA 1 −1.24E + 00 1.39E-02

RMST processed_transcript 0 −1.23E + 00 6.41E-07

MIAT processed_transcript 1 −1.28E + 00 6.10E-06

NEFL processed_transcript 0 −1.18E + 00 2.08E-04

TMEM191A processed_transcript 0 −7.74E-01 1.33E-02

SPPL2B processed_transcript 1 −6.41E-01 2.32E-02

SCARNA22 sense_intronic 0 −1.31E + 00 1.56E-03

SNHG3 sense_intronic 1 −7.94E-01 1.41E-02

SOX2-OT sense_overlapping 1 9.29E-01 9.81E-04

SNORA31 snoRNA 0 −1.03E + 00 2.41E-02

SNORA7B snoRNA 1 −1.03E + 00 3.30E-02

SCARNA13 snoRNA 0 −7.08E-01 3.77E-02

SNORA73B snoRNA 1 −7.89E-01 4.61E-02

RNU2-59P snRNA 0 −9.94E-01 1.76E-02

RNU6-15P snRNA 0 −1.07E + 00 4.99E-02

FC is fold change: CHD8+/−/CHD8++. Padj is adjusted p value. CHD8 binding based on ChIP-seq in NPCs by Sugathan et al. [42]
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disabilities, and microcephaly [134, 135]. Thus, TCF4
gene dosage in either direction adversely affects brain
development.
Other transcription factors and chromatin regulators

that are significantly affected by CHD8 haploinsuffi-
ciency that are also ASD and SZ candidate genes include
POU3F2 and AUTS2. POU3F2 expression is significantly
decreased in CHD8+/− in cerebral organoids, as well as
in NPCs and neurons, while AUTS2 expression is signifi-
cantly decreased in CHD8+/− in cerebral organoids and
neurons, but not NPCs (Additional file 4: Table S2) [8].
POU3F2 codes for a member of the POU family of tran-
scription factors, and has been implicated in SZ, and
more recently in BD, developmental delay, and intellec-
tual disability [136, 137]. Its critical role in neuronal dif-
ferentiation is highlighted by the finding that it is one of
the three factors, along with MYT1L and ASCL1, used
in the direct reprogramming of fibroblasts into neurons
[138]. AUTS2 codes for a chromatin-remodeling protein
that functions as a component of the polycomb repres-
sive complex 1 (PRC1); loss of function mutations can
lead to ASD, SZ and intellectual disabilities [139–141].
Also, it is interesting to note, in the context of the ASD/
cancer connection, that AUTS2 is part of a translocation
commonly found in childhood B cell precursor acute
lymphoblastic leukemia [142].
One of the most interesting downstream targets of

CHD8 we found regarding neurodevelopmental and
neuropsychiatric disorders is the non-coding RNA,
DLX6-AS1, which was the top DEG in our CHD8+/−

organoids, as well as organoids derived from a family
with idiopathic ASD [42]. DLX6-AS1 overlaps with
DLX6 and is expressed in the opposite transcriptional
orientation. In mice, a splice variant of Dlx6-as1 called
Dlx6-as2 (evf2) cooperates with Dlx2 to increase the
transcriptional activating function of the Dlx5/6 enhan-
cer [143].
These findings suggest that CHD8 affects GABAergic

interneuron development, by modulating DLX gene ex-
pression. Consistent with this idea is the finding that
several genes, in addition to DLX1, involved in cerebral
cortex GABAergic interneuron differentiation, FEZF2,
ARX, and CNTN2, were differentially expressed in
CHD8+/− organoids (Additional file 4: Table S2). Statisti-
cally, the enrichment of genes involved in cerebral cor-
tex GABAergic interneuron differentiation only achieved
a trend toward significance (p = 3.6E-3; padj = 5.8E-2),
which could be due to the relatively small sample size. Ab-
normalities in cortical GABA interneuron function, in
particular, parvalbumin positive and somatostatin positive
interneurons have been found in SZ and ASD [144–146].
It should be noted that a limitation of this study is that

it is based on a knockout carried out on a single iPS cell
line, so replication in other lines is critical. Nevertheless,

our findings strongly support a major role of CHD8 on
Wnt/β-catenin signaling, and a connection between
CHD8 and TCF4, and several other genes that have been
implicated in neuropsychiatric and neurodevelopmental
disorders, in particular, members of the DLX gene
family. In addition, the overlap we detected between the
CHD8+/− transcriptome and the transcriptomes obtained
in idiopathic ASD and BD shows that common molecu-
lar pathways exist in different clinical conditions caused
by seemingly disparate candidate genes. Identifying such
common pathways will facilitate drug discovery in these
genetically heterogeneous disorders.

Conclusions
CHD8, which codes for a chromatin-remodeling factor,
is mutated in a subgroup of patients with ASD and SZ.
RNA-seq analysis of cerebral organoids derived from iPS
cells that are heterozygous for a CHD8 knockout allele,
and isogenic controls, shows that CHD8 regulates the
expression of other genes implicated in ASD and SZ,
notably TCF4 and AUTS2. In addition, extensive overlap
was observed for differentially expressed genes (DEGs)
found in another study using organoids derived from a
family with idiopathic autism, especially for genes in-
volved in GABAergic interneuron development. These
findings show molecular convergence of disparate genes
involved in the development of ASD and SZ, an observa-
tion that will facilitate drug discovery. In addition, path-
way analysis of DEGs revealed an enrichment of genes
involved in regulating Wnt/β-catenin signaling, a drug-
gable pathway.
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Additional file 2: Figure S1. (1) Immunohistochemistry (IHS) of control
organoid section showing GABA immunoreactivity (GABAergic neurons)
in a field of MAP2+ neurons. (2) IHS showing GABA and vGLUT2+
(glutamatergic) neurons. (3). quantitative IHS. CHD8 protein was quantified
as described in “Methods” section comparing a control organoid (CHD8+/+)
with a heterozygous CHD8 KO organoid (CHD8+/−). The images were
captured using the same parameters, such as exposure times, for each
fluorescence channel was the same for the CHD8+/+ and CHD8+/− samples.
Images edited in power point using the Picture Tools option were adjusted
to the same brightness and contrast levels in CHD8+/+and CHD8+/− sections
for CHD8 immunoreactivity and for Tuj1 reactivity. (PDF 1507 kb)

Additional file 3: Table S1. Summary of RNA-seq quality and number
of differentially expressed genes. (DOCX 14 kb)

Additional file 4: Table S2. old change and level of significance for all
genes in RNA-seq analysis: sheet1, results from Kallisto/DESeq2; sheet2, results
from TopHat/DESeq2. Log2 fold change is heterozygote/control; pval
is uncorrected p value; padj is adjusted p value for genome-wide significant.
Bold type highlights differentially expressed genes at padj < 0.05. NPC
binding is based on Sugathan et al. [28]. Log2 fold changes and p values
from previous findings in NPCs and monolayer neurons are also shown [8].
(XLSX 8994 kb)
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Additional file 7: Table S5. List of overlapping DEGs between CHD8
KO organoids, NPCs and neurons, and non-responder and lithium (Li)
responder patients with BD (sheet 1). Gene ontologies for overlapping
genes between CHD8 KO and Li non-responders and Li responders
(sheets 2 and 3, respectively). (XLSX 22 kb)

Additional file 8: Table S6. Lists DEG from CHD8 KO organoids, NPCs,
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