

ERRATUM Open Access

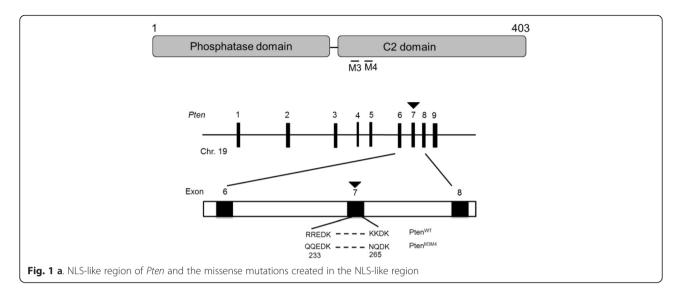
Erratum to: Cytoplasm-predominant Pten associates with increased region-specific brain tyrosine hydroxylase and dopamine D2 receptors in mouse model with autistic traits

Xin He^{1,2}, Stetson Thacker^{1,2,3}, Todd Romigh^{1,2}, Qi Yu^{1,2}, Thomas W. Frazier Jr^{1,2,3,4,5} and Charis Eng^{1,2,3,6,7,8,9*}

Erratum

We have just noticed a minor error in Fig. 1a of our article [1]. The m3m4 mutation was described incorrectly as it improperly describes two *Pten* mutations, R233N and K269N. However, the confirmed sequence data on the m3m4 mutation indicates there are five nucleotide changes, as we have previously published [2], resulting in four amino acid changes: R233Q, R234Q, K265N, and K266Q. The fifth nucleotide change is a synonymous mutation, L264L. For greater clarity on the details of the nucleotide changes and the corresponding amino acid changes of the m3m4 mutation, they have been provided:

	NLS3					NLS4				
Amino Acid	233	234	235	236	237	264	265	266	267	268
PTEN-WT	CGA-	-CGG-	GAA-	GAC	AAG-	 CTT-/	AAA-	AAG-	GAC-	AAA
	R	R	E	D	K	L	K	K	D	K
PTEN-m3m4	CAA-	CAG-	GAA-	GAC	AAG-	 CT <mark>C-</mark> 2	AAC-	CAG-	GAC-	AAA
	Q	Q	Е	D	K	L	N	Q	D	K


Additionally, the included Fig. 1a now shows the correct amino acid changes. We apologize for any confusion caused by this error.

²Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA Full list of author information is available at the end of the article

^{*} Correspondence: engc@ccf.org

¹Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Mailstop NE-50, Cleveland OH 44195, USA

Author details

¹Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Mailstop NE-50, Cleveland OH 44195, USA. ²Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. ³HHMI Graduate Program, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Lerner College of Medicine, Sease Western Reserve University School of Medicine, Cleveland, OH, USA. ⁴Center for Autism, Pediatrics Institute, Cleveland Clinic, Cleveland, OH, USA. ⁵Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA. ⁶Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA. ⁷Stanley Shalom Zielony Institute of Nursing Excellence, Cleveland Clinic, Cleveland, OH, USA. ⁸Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA. ⁹CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.

Published: 3 February 2016

Reference

- He X, Thacker S, Romigh T, Yu Q, Frazier Jr TW, Eng C. Cytoplasm-predominant Pten associates with increased region-specific brain tyrosine hydroxylase and dopamine D2 receptors in mouse model with autistic traits. Mol Autism. 2015;6:63.
- Tilot AK, Gaugler MK, Yu Q, Romigh T, Yu W, Miller RH, et al. Germline disruption of Pten localization causes enhanced sex-dependent social motivation and increased glial production. Hum Mol Genet. 2014; 23(12): 3212–27. doi:10.1093/hmg/ddu031.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

