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Abstract

Background: Atypical responsiveness to olfactory stimuli has been reported as the strongest predictor of social
impairment in children with autism spectrum disorders (ASD). However, previous laboratory-based sensory
psychophysical studies that have aimed to investigate olfactory sensitivity in children with ASD have produced
inconsistent results. The methodology of these studies is limited by several factors, and more sophisticated
approaches are required to produce consistent results.

Methods: We measured olfactory detection thresholds in children with ASD and typical development (TD) using a
pulse ejection system—a newly developed methodology designed to resolve problems encountered in previous
studies. The two odorants used as stimuli were isoamyl acetate and allyl caproate.

Results: Forty-three participants took part in this study: 23 (6 females, 17 males) children with ASD and 20 with
TD (6 females, 14 males). Olfactory detection thresholds of children with ASD were significantly higher than those
of TD children with both isoamyl acetate (2.85 ± 0.28 vs 1.57 ± 0.15; p < 0.001) and allyl caproate ( 3.30 ± 0.23 vs
1.17 ± 0.08; p < 0.001).

Conclusions: We found impaired olfactory detection thresholds in children with ASD. Our results contribute to a
better understanding of the olfactory abnormalities that children with ASD experience. Considering the role and
effect that odors play in our daily lives, insensitivity to some odorants might have a tremendous impact on children
with ASD. Future studies of olfactory processing in ASD may reveal important links between brain function, clinically
relevant behavior, and treatment.
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Background
A growing body of evidence suggests that children with
autism spectrum disorders (ASD) experience increased
sensory symptoms compared to children with typical de-
velopment (TD) or those having general delays [1, 2].
The fact that recently released diagnostic criteria of the

Diagnostic and Statistical Manual of Mental Disorders,
5th Edition (DSM-5) [3] have included sensory issues re-
flects the growing interest of these symptoms in ASD.
Among sensory systems, an abnormal response to taste
and smell has been reported to be the most pronounced
when dissociating children with ASD from children with
other developmental disorders [1, 4]. Moreover, differ-
ences in the olfactory traits of children with ASD might
contribute to high rates of food refusal and selectivity [5, 6],
and atypical responsiveness to olfactory stimuli have been
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reported as the strongest predictor of social impairment in
children with ASD [7, 8].
Despite their importance, olfactory abnormalities in

children with ASD are still poorly understood compared
to abnormalities in touch, vision, and audition. In fact,
there have been limited experimental studies concerning
olfactory abnormalities in ASD. According to Dunn model
[9], sensory modulation disorders (SMDs) are classified
into three types: over-responsivity, under-responsivity, and
sensory seeking. Among sensory symptoms, differences
between individuals with ASD and TD subjects were
greatest for under-responsivity, which describes a high
threshold for sensory input [10, 11]. This trait is associated
with lower adaptive functioning and poorer communica-
tion and social performance [8, 12]. Therefore, investiga-
tions of olfactory detection thresholds could provide
important clues regarding the nature of children with
ASD. However, previous laboratory-based sensory psycho-
physical studies [13–16] that have investigated olfactory
detection thresholds in children with ASD have produced
inconsistent results, probably due to methodological
difficulties. The methods used in these studies were the
University of Pennsylvania Smell Identification Test
(UPSIT) [17], Sniffin’ Sticks [18], and the alcohol sniff
test (AST) [19]. For these measurements, controlling
scent granularity is a considerable challenge because of
the problem of scent scattering in the air. The influence
of lingering scent is a major problem [20]. Since olfaction
is one of the most readily adaptable senses [21], accurate
measurements are not possible when scents are left
lingering in the air [22]. Concerning adaptation, the partic-
ipants being exposed to the odor stimuli for a long time is
also a serious problem inherent in these methods. To
solve these problems, robust methodology is needed to
measure thresholds of olfactory detection.
To address this issue, we developed a method called

the Fragrance Jet for Medical Checkup (Keio University)
(Fig. 1), which uses a pulse ejection system [20]. The
system can measure and quantify the olfactory detection
threshold in precise detail in response to pulsed scents.
The test has been reliably standardized and is appropriate
for both children and adults. It uses the same technique as
used in a basic inkjet printer in that it outputs tiny
droplets of fragrance. The system has one large tank and
three small ones for olfactory measurement and produces
a small jet that disperses into droplets from small holes in
the tank. There are 255 minute holes in the large tank and
127 minute holes in small tanks. It is possible to emit
scent at the same time through all these holes. Figure 2
shows a conceptual graph of a pulse ejection. The scent
intensity is controlled by two parameters: ejection quantity
(EQ) per unit time (EQUT) and ejection time (ET). The
device can change the ET at 667-μs intervals so that the
measurement can be precisely controlled. Unlike existing

olfactory measurement techniques which change the
concentration of a scent and require that these various
concentrations be prepared ahead of time, our approach
allows us to measure the olfactory detection threshold by
only changing the EQ. Using very small quantities of an
odorant reduces lingering scents during measurement and
makes adaptation of the olfactory system more difficult
[23]. Thus, along with using small odorant quantities,
our measurements were performed in a location that
was adequately ventilated in order to prevent lingering
scent trails.
In addition to the pulse ejection system and experimental

room conditions, several aspects of our system increase its
efficiency and credibility relative to previous methodologies.

Fig. 1 Fragrance jet for medical checkup. This device creates
ejection pulses for scent presentation with a high degree of
granularity control. In response to pulsed scents, the device can
measure and quantify olfactory detection thresholds in precise detail

Fig. 2 Conceptual graph of the pulse ejection system. The scent
intensity is controlled by two parameters: ejection quantity per unit
time (EQUT) and ejection time (ET). Ejection can be controlled in
pulses of 667 μs. Compared to existing measurement techniques,
this system can minimize lingering scent trails and makes it more
difficult for the olfactory system to adapt to a particular odor
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First, we used little alcohol when diluting odorants. Alcohol
is known to stimulate the trigeminal nerve, which could
confound any collected data due to activation of an alterna-
tive sensory pathway. Therefore, odorants were diluted
to 5 % using ethanol and water to adjust their adhesive-
ness. In our preliminary experiment, we confirmed that all
participants were unable to smell the ethanol. Second, the
perceived familiarity and pleasantness of the odor was
matched for participants. We measured the olfactory de-
tection threshold using isoamyl acetate and allyl caproate,
which smell like banana and pineapple, respectively. In
our preliminary experiments, we confirmed that all partic-
ipants were familiar with the two fruits and that they did
not dislike the scents, based on Likert scale ratings. Third,
our measurement system was kept as simple as possible in
order to avoid reflecting attentional differences. Moreover,
our system did not require executive function, which has
been reported to be impaired in ASD [24, 25].
Thus, we consider that the pulse injection system used

in the current study may resolve problems encountered
in previous studies. Using this new methodology, the
present study was carried out to compare the olfactory
detection threshold in children with ASD to age-matched
control participants in order to contribute to a better
understanding of olfactory abnormalities that are often
observed in children with ASD.

Methods
Participants
The present study was approved by the ethics committee
of the University of Fukui. Participants were TD children
and those with ASD; children with ASD were recruited
from the University of Fukui Hospital and related clinics.
After a complete explanation of the study, all the partici-
pants provided written, informed consent. All participants
and their guardians agreed to participate in the study. We
excluded subjects with an organic smell disturbance, nasal
blockage due to sinus/virus compromise, an acute respira-
tory infection, premenstrual syndrome, or previous history
of head injury or illicit substance use. Inclusion criteria of
the ASD group were (1) diagnosis of ASD based on the
DSM-5 [3], (2) age 8–16 years, and (3) IQ ≧70. Exclusion
criteria for the ASD group included medical conditions
associated with autism (e.g., FMR1, Rett syndrome, and
Shank3). To exclude other psychiatric diagnoses, the
Mini-International Neuropsychiatric Interview for Children
and Adolescents (MINI Kids) [26] was administered. To
obtain data from age-matched TD, healthy schoolchildren
aged 8–16 years were recruited as subjects from the
community. Control participants had no history or evi-
dence of ASD. To screen control participants for autistic
traits, the Childhood Autism Rating Scale-Tokyo Version
(CARS-TV) was used. The CARS-TV is the Japanese
version of the CARS [27]—one of the most widely used

scales to evaluate the degree and profiles of autism in
children—and has been determined to have satisfactory
reliability and validity [28, 29]. Diagnoses in the ASD
group were confirmed by the first author of this report
using diagnostic instruments and screening questionnaires
including the Pervasive Developmental Disorder—Autism
Society Japan Rating Scale (PARS) [30]. The PARS is a
diagnostic interview scale for ASD that was developed in
Japan, and sub and total scores of this scale correlate with
the domain and total scores of the Autism Diagnostic
Interview-Revised (ADI-R) [31, 32]. The primary as-
sessment for ASD included interviews regarding the
developmental history and symptoms of the children in
this group, as well as behavioral observation. Clinical
psychologists collected information from parents re-
garding developmental milestones (i.e., joint attention,
social interaction, pretend play, and repetitive behaviors,
with onset prior to age 3) and episodes (e.g., behavior
throughout school). Information from detailed obser-
vations of their interactions with people (particularly
non-family members), as well as repetitive behavior
(i.e., obsessive-compulsive traits and stereotyped behavior),
was provided by other professionals (i.e., teachers and
social workers). Since an intellectual level equivalent to
that of a 5-year-old is needed to complete the measure-
ments, intelligence testing in children with ASD was per-
formed using the Wechsler Intelligence Scale for
Children—Fourth Edition (WISC-IV) [33]. WISC-IV
testing was not performed for children with TD be-
cause of time constraints. However, all participants
were attending mainstream schools with no evidence of
intellectual impairment.

Olfactory measurement
We measured olfactory detection thresholds using a
pulse ejection system called the “Fragrance Jet for
Medical Checkup” (Fig. 2) (Keio University) [20]. The
stimuli used were isoamyl acetate and allyl caproate,
which were simple chemicals and, unlike many natural
fragrances, were not affected by the preservation
method and had the added advantage of being easy
to reproduce.
The display emitted scents from multiple holes at the

same time, allowing the number of simultaneous ejec-
tions (NSE) to be set in the range of 0 to 255. Before the
experiment, we confirmed that all participants under-
stood the rules of the experiment. We began with an
NSE of 80 and an ET of 200 ms based on the results of
preliminary experiments and our earlier study [20]. The
touch panel system displayed three boxes, each of which
contained a stimulus (Fig. 3), and the olfactory detection
threshold was assessed using a triple forced-choice pro-
cedure where three stimuli were presented at random
(one stimulus was scented while the other two were
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odorless). All children were fascinated by our touch
panel display. The presentation was as simple as possible
so that all children, including those with ASD, could
concentrate during the experiment. The subject’s task
was to identify the box that contained the scented
stimulus. When the participants pushed one of the three
boxes, an odor was given off 3.0 s later. The participant
was allowed to push each box up to two times. After
two successful trials, the EQ fell by 50 %. This was con-
tinued until the participant made a mistake and selected
the box that contained an odorless stimulus or until the
participant cleared an NSE of 10. We administered the
odors from strongest to weakest to maintain the motivation
and concentration of all children. The detection threshold
was generated after the procedure was completed. Mea-
surements were finished approximately 5 min after the start
of the procedure and were influenced very little by lingering
scent trails. The olfactory detection threshold was defined
using a logarithmic function as the NSE of the last trial.
The mathematical process used to determine the olfactory
detection threshold is as follows:

Olfactory detection threshold ¼ log2 NSE of last trialð Þ=5

If participants were not able to identify an NSE of 80,
their score was 5. Participants that were able to identify
an NSE of 80, but could not identify an NSE of 40, were
given a score of 4. Finally, if a participant was able to
identify an NSE of 40, 20, and 10, their score was 3, 2,
and 1, respectively. A subject’s scores could range from
5 (unable to detect even the highest concentration) to 1
(able to detect the lowest concentration) for each odor.
Participants neither ate nor drank anything but water

for 30 min prior to testing. Because temperature can

influence odor, the temperature of the experimental
room was maintained at (21–23 °C) during the study
[34]. Experiments were conducted under conditions in
which the participant and experimenter were diagonally
opposite. A board was placed between them to prevent
participants from being able to see the procedures and
results. Each participant was required to sit in front of
the olfactory display and position their chin on the chin
rest such that the distance from the olfactory ejection
point to the nose was fixed.

Statistical analysis
Statistical analysis was performed using the Statistical
Package for the Social Sciences (SPSS, version 15.0).
Descriptive statistics for the sample were used. The
differences of age and CARS score between the groups
were analyzed using an independent samples t test. The
difference in gender proportion was analyzed using the χ2

test. Differences in olfactory detection threshold were ana-
lyzed using the Mann-Whitney U test. Pearson product-
moment correlation coefficients were used to explore the
relationships between age/IQ and the olfactory detection
threshold in children with ASD.

Results
Demographic data
In total, 43 children took part in this study. All partici-
pants completed the experiment in about 5 min. The
ASD group included 20 participants (14 males), mean
age 13.2 ± 2.1. The total CARS score for the ASD group
was 34.1 ± 2.4, and their average IQ score was 100.7 ±
12.1. The TD group included 23 participants (14 males),
mean age 12.5 ± 2.2. The total CARS score for the TD
group was 17.7 ± 1.3, and all participants were non-
smokers. There were no significant differences between
groups with regard to mean age (p = 0.43) and gender
proportion (p = 0.53); details are presented in Table 1.

Olfactory detection threshold
Olfactory detection thresholds of the ASD group were sig-
nificantly higher than that of the TD group using both iso-
amyl acetate (2.85 ± 0.28 vs 1.57 ± 0.15; p < 0.001) and allyl
caproate ( 3.30 ± 0.23 vs 1.17 ± 0.08; p < 0.001) (Table 2).
Figure 4 is also a graphic representation of the results. In
addition, we did not find any relationship between the
olfactory detection threshold of isoamyl acetate and age
(r= −0.34, p = 0.15), IQ (r = −0.20, p = 0.41) or the olfactory
detection threshold of allyl caproate and age (r = −0.22,
p = 0.35), and IQ (r = −0.08, p = 0.74) in children with ASD.

Discussion
The aim of this study was to examine olfactory detection
thresholds using our newly developed measurement
system, which might resolve problems associated with

Fig. 3 Touch panel display. The touch panel is comprised of three
boxes. Three stimuli are presented at random, of which one is
scented and the other two are odorless. When participants push a
box, odors are given off
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previous laboratory-based sensory psychophysical studies.
Using this system, we found that children with ASD were
insensitive to both isoamyl acetate and allyl caproate
compared to children with TD.
It has been well-described that children with ASD have

olfactory abnormalities. More specifically, anecdotal reports
and studies using sensory questionnaires have suggested
that these children may either show little or no response to
olfactory stimuli (high threshold) or, conversely, may be
overwhelmed by stimuli (low threshold) [1, 35–37].
These abnormalities also extend to other sensory

modalities in that children with ASD may show over-
responsivity to unpleasant auditory input, distractibility by
background noise, and/or unawareness or slow responses
to familiar auditory input [38, 39]. Visual difficulties also
include both hyper- and hypo-responsiveness [40, 41].
One plausible theory might be that children with ASD
tend to over-focus their attention on details, which results
in the superior processing of complex stimuli, whether
auditory or visual. However, despite the plethora of studies
that have been conducted on disruptions to sensory pro-
cessing in children with ASD, it remains unclear whether
over-attention is the root cause of these abnormalities.
Compared to disruptions of the auditory and visual

system, research of the olfactory abnormalities experi-
enced by children with ASD is still in its infancy. In fact,
a rough profile of the irregularities to this system has
not even been described, let alone a theory proposed for
the nature of the abnormalities. Since atypical respon-
siveness to olfactory stimuli has been reported as the
strongest predictor of social impairment in children with
ASD [7, 8], understanding the nature of the olfactory
abnormalities is crucial for the optimal intervention of
these children. These factors prompted us to conduct
the present study using our newly developed jet pulse
injection system for determining olfactory thresholds.
Our rational was that, in order to understand the olfactory

abnormalities experienced by children with ASD, we first
needed to measure a simple detection threshold. In the
present study, by using newly developed methodology, we
were able to show that children with ASD exhibited high
thresholds for the two stimuli studied. As previously de-
scribed, earlier studies in this field have reported inconsist-
ent results, but methodological differences hamper direct
comparison [13–16]. Suzuki et al. [15] used 1-butanol for
olfactory testing, Dudova et al. [14] and Tavassoli and
Baron-Cohe [16] used Sniffin’ Sticks [18] with n-butanol,
and Ashwin et al. [13] employed the alcohol sniff test [19]
with isopropyl alcohol. Although these previous studies
used alcohol as the odorant, each used different kinds of
alcoholic odorants in olfactory detection threshold testing,
which could lead to inconsistent results [42]. In addition,
one study [14] tested children, while three others exam-
ined adult subjects [13, 15, 16]. Chronologic aging plays
an important role in olfactory research in ASD [43]. Since
it has been suggested that the olfactory system develops
differently in ASD compared to controls [44, 45], age
differences may explain the discrepant results. It should be
noted that some of those studies were focused on the iden-
tification of odors, not on the detection of olfactory thresh-
olds. A recent study conducted by Ashwin et al. [13]
examined thresholds for olfactory detection using a care-
fully designed method. They used isopropyl alcohol for
odor and also employed methods to prevent trigeminal
nerve activation and to familiarize the subjects with the
alcohol odor. They also performed an experiment where air
movement was minimized; windows remained closed and
covered throughout, and there was no air control mechan-
ism. However, their results contradicted the results reported
here. One explanation for this discrepancy might be the dif-
ference in stimuli used. In fact, Ashwin et al. [13] suggested
that the pleasantness level of odors for people with ASD
could also affect their detection threshold for that odor.
Sensory abnormalities may be a key physiological fac-

tor underlying social impairments that are associated
with ASD. It has been proposed that early perceptual
capacities of individuals with ASD may set up a cascade
of development deficits that contribute to the poor social
skills seen at older ages. Given the recent evidence that
atypical responsiveness to olfactory stimuli is the strongest
predictor of social impairment in children with ASD [7,
8], our results might help to elucidate the nature of ASD-

Table 2 Olfactory detection threshold of the ASD and TD groups

ASD (n = 20) TD (n = 23) Mann-Whitney U test

(M, SEM) (M, SEM) p

Isoamyl acetate 2.85 ± 0.28 1.57 ± 0.15 <0.001

Allyl caproate 3.30 ± 0.23 1.17 ± 0.08 <0.001

M mean, SEM standard error of the mean

Table 1 Descriptive characteristics of the ASD and TD groups

ASD (n = 20) TD (n = 23) Statistics

(M, SD) (M, SD) t orχ2 df p

Age (M, SD) 13.2 ± 2.1 12.5 ± 2.2 t = 1.100 41 0.278

Gender (males:females) 14:6 17:6 χ2 = 0.393 1 0.531

CARS (M, SD) 34.1 ± 2.4 17.7 ± 1.3 t = 28.955 41 <0.001

M mean, SD standard deviation
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related social impairment. For instance, odor has been
shown to have influence on mood as well as autonomic,
endocrine, and immune functions [46]. Odors have also
been shown to play an important role in inducing
emotional reactions, imitating the action of others, and
regulating social interactions [47–49]. Thus, insensitivity
to some odors might have a tremendous impact on
children with ASD, which might explain findings reported
by Lane et al. [8] describing that olfactory disturbances
could predict communication competence and maladap-
tive behavior. Since both social-emotional and sensory
functions are related to the amygdala, research on olfac-
tory detection may lead to further elucidation of the
neurobiology of ASD. In addition, Brewer et al. [50] and
Hrdlicka et al. [51] have suggested that examination of
olfactory disturbances could provide early markers of
ASD. Thus, assessment of olfactory detection thresholds
might lead to the development of useful diagnostic tools,
increasing service and therapeutic efficacy for children
with ASD. Moreover, investigating olfactory detection
thresholds in children with ASD might contribute to our
understanding of the neurobiology of ASD and related
disorders. Future studies using a variety of olfactory
stimuli, participants of different ages, and autistic traits
and relationships will be fruitful.
A number of study limitations must be acknowledged.

First, we did not perform exact IQ testing in the control
group, and relied only on normal school performance of
the subjects that enrolled in this experiment. However,
all controls were attending mainstream schools with no

evidence of intellectual impairment. We confirmed that
5-year-old children with average intellectual and verbal
competency could complete the measurements in our
preliminary experiments. The present results also demon-
strate that IQ is not correlated with the olfactory detection
threshold for children with ASD. One previous study sug-
gested that cognitive factors are unrelated to performance
on olfactory detection threshold tests [9]. However, since
our methodology relies on verbal comprehension and
communication, the subjects’ verbal abilities could affect
the results. In relation to this point, two recently published
studies employed unique approaches that do not rely on
verbal communication [52, 53]. Aguillon-Hernandez et al.
[52] used an objective, vision-based approach to evaluate
odor identification and reported that visual exploratory
behavior may be influenced by olfactory identification.
Rozenkrantz et al. [53] used a computer-controlled air-
dilution olfactometer equipped with a custom-designed
double-barreled pediatric nasal cannula and found that
the sniff response was linked to social impairment in
ASD. Because the methodologies used in these studies
do not rely on verbal communication, they can be used
in non-verbal children with more severe forms of ASD,
which greatly expands the types of subjects who can
participate in research. In future studies, pairing our odor
presentation method with these innovative methodologies
could yield results that are more robust. In addition,
it should be emphasized that Aguillon-Hernandez and
colleagues focused on odor identification, the evaluation
of which was dependent on verbal labeling and semantic

Fig. 4 Subjects’ olfactory detection thresholds. Numbers of ASD or TD subjects for each odor stimulus
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memory in conventional methodologies [54, 55]. An
important future line of research would be to study both
odor identification and threshold detection in the same
group of subjects, since an important dissociation could
occur between identification and sensitivity across the
spectrum. Second, our study employed a relatively small
number of participants (n = 43), which included 20 chil-
dren with TD and 23 children with ASD. Moreover, most
of our sample consisted of males. Given the sex differ-
ences in olfactory functioning that have been identified in
healthy subjects [56], future research should examine
larger samples and include more female participants.
Third, we used only two olfactory stimuli in the present
work. Moreover, both stimuli were associated with fruit
smells, which limits making generalizations about other
odorants. Therefore, validation of the present findings
using a more sophisticated method in a larger independ-
ent cohort is needed.

Conclusions
In summary, this study showed that the olfactory detection
threshold for children with ASD was higher than that for
children with TD. We were able to determine this using
a pulse ejection system, which could measure detection
thresholds more precisely than previous laboratory-based
sensory psychological studies. Future studies of olfactory
processing in individuals with ASD using this method-
ology may reveal important links between brain function,
clinically relevant behavior, and treatment.
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