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Abstract

associated with ASD.

Background: Whole-exome sequencing studies in autism spectrum disorder (ASD) have identified de novo
mutations in novel candidate genes, including the synaptic gene Eighty-five Requiring 3A (EFR3A). EFR3A is a critical
component of a protein complex required for the synthesis of the phosphoinositide PtdIns4P, which has a variety
of functions at the neural synapse. We hypothesized that deleterious mutations in £FR3A would be significantly

Methods: We conducted a large case/control association study by deep resequencing and analysis of whole-exome
data for coding and splice site variants in EFR3A. We determined the potential impact of these variants on protein
structure and function by a variety of conservation measures and analysis of the Saccharomyces cerevisiae Efr3 crystal
structure. We also analyzed the expression pattern of £FR3A in human brain tissue.

Results: Rare nonsynonymous mutations in £FR3A were more common among cases (16 / 2,196 = 0.73%) than
matched controls (12 / 3,389 = 0.35%) and were statistically more common at conserved nucleotides based on an
experiment-wide significance threshold (P=0.0077, permutation test). Crystal structure analysis revealed that mutations
likely to be deleterious were also statistically more common in cases than controls (P=0.017, Fisher exact test).
Furthermore, EFR3A is expressed in cortical neurons, including pyramidal neurons, during human fetal brain
development in a pattern consistent with ASD-related genes, and it is strongly co-expressed (P< 2.2 x107'°,

Wilcoxon test) with a module of genes significantly associated with ASD.

Conclusions: Rare deleterious mutations in EFR3A were found to be associated with ASD using an experiment-wide
significance threshold. Synaptic phosphoinositide metabolism has been strongly implicated in syndromic forms of ASD.
These data for £FR3A strengthen the evidence for the involvement of this pathway in idiopathic autism.
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Background

Autism spectrum disorders (ASDs) are defined by per-
sistent deficits in social communication and social inter-
action and restricted repetitive patterns of behavior,
interests or activities [1]. These syndromes are common
in the population, with a prevalence of approximately
1% [2], and demonstrate both considerable phenotypic
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and extensive genetic heterogeneity [3]. High-through-
put sequencing approaches have provided substantial
insight into the genomic architecture of ASDs. For
example, multiple analyses of whole-exome sequencing
data demonstrate an over-representation of de novo,
loss-of-function mutations in brain-expressed genes in
affected individuals and point to half a dozen new ASD
genes [3-6]. These have been identified based on the
clustering of mutations in the same gene in unrelated
individuals, providing strong evidence for association
[3]. However, a large number of compelling, rare, de
novo missense mutations are also found in probands,
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though a clear threshold for identifying the association
of these mutations with ASD is less obvious. Both the
rarity of the individual mutations and the small size of
current exome discovery cohorts suggest that clarifying
which of these de novo mutations point to bona fide
ASD genes will require alternative approaches. Large-
scale, targeted, case/control sequencing as a complement
to de novo mutation discovery in ASD is one such
strategy.

In a whole-exome analysis of 238 families [3], we identi-
fied a single proband carrying two novel de novo missense
mutations in synaptic genes, one each in EFR3A (Eighty-five
Requiring 3A [NCBI Reference Sequence: NM_015137])
and CASK (Calcium/Calmodulin-dependent Serine/Threo-
nine Kinase [NCBI Reference Sequence: NM_003688]).
Both yeast EFR3 [7] and mammalian EFR3A and EFR3B
[8] have been linked to the control of phosphoinositide
metabolism, a pathway demonstrated to play a role in
ASD [9]. CASK is implicated in X-linked intellectual dis-
ability [10]. Neither the occurrence of one or several de
novo missense mutations in a single affected individual is
a statistically significant finding. However, our overall
analysis of 599 simplex ASD quartets suggests that ap-
proximately 20% of de novo missense mutations in brain-
expressed genes found in cases will prove to be true ASD
loci, representing an approximately fourfold increase over
a brain-expressed gene chosen at random [11]. Given an
increased prior probability based on the exome results
and the strong biological plausibility of both genes, we
conducted a targeted analysis of EFR3A and CASK in large
cohorts using both Sanger sequencing and whole-exome
data. We found that rare deleterious mutations in EFR3A
are associated with ASD using an experiment-wide signifi-
cance threshold.

Methods

Subjects

Initial cases were drawn from the Simons Simplex Collec-
tion (SSC). The SSC is an exhaustively characterized ASD
family cohort, with the majority of families consisting of a
proband, two unaffected parents and an unaffected sibling.
The diagnostic methodology used is well described else-
where [12]. EFR3A and CASK were sequenced in 705
cases of European ancestry (Family Distribution List v13)
based on genome-wide genotyping data (see below). Based
on a preliminary analysis of the sequence data, mutation
screening then focused on EFR3A, which was evaluated in
several cohorts for which we had access to DNA or
whole-exome sequencing results. Additional cases were
drawn from the SSC (# = 452) and via collaboration with
the ARRA Autism Sequencing Collaboration (AASC,
n=1,039). All cases were identified as having European
ancestry via genome-wide genotyping data. Sample cha-
racteristics and diagnostic methodology for the AASC
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have been described previously [5,13]. For controls, 912
were drawn from the National Institute of Neurological
Disorders and Stroke (NINDS) Neurologically Normal
Caucasian Control Panel (NDPT020, 079, 082, 084, 090,
093, 094, 095, 096, and 098). This set of adult subjects has
a negative personal and family history (first-degree rela-
tives) of neuropsychiatric illness. Additional controls were
drawn from the AASC (n = 863) and from ongoing studies
of non-neuropsychiatric conditions at our home institu-
tion (northern European (NE) controls, n = 1,614). Again,
all controls were of confirmed European ancestry. The NE
and AASC controls were considered population controls
since subjects with potential neuropsychiatric disorders
were not excluded. This study only accessed de-identified
biospecimens or sequencing data and no protected health
information; it received an exemption from human sub-
ject research from the Yale Human Research Protection
Program.

Genotyping and ancestry matching

1,304 SSC cases were genotyped using HumanlM-Duo
vl, HumanlM-Duo v3 or HumanOmni2.5 BeadChips
(lumina, San Diego, CA, USA). 923 NINDS controls
were genotyped using Illumina HumanOmniExpress12v1.
1,779 NE controls were genotyped using [llumina 550 K
Single or 610 Quad v1 BeadChips. Subjects were removed
because of: (1) genotyping call rate <95%, (2) discrepancy
of genotyping data with recorded sex, and (3) Mendelian
inconsistencies or cryptic relatedness (up to and including
second-degree relatives).

For ancestry matching, Golden Helix SNP and Variation
Suite v7.5.4 (Bozeman, MT, USA) was used in principal
component analysis (PCA) of SSC cases, NINDS controls
and NE controls using 8,210 SNPs common to all arrays
and not in high linkage disequilibrium. Based on vi-
sualization of a scree plot (Additional file 1: Figure S1),
eigenvalues of the first three principal components, which
contributed the greatest amount of variation relative to
the other principal components, were plotted against one
another (Additional file 2: Figure S2). The interquartile
range (IQR) distance around the median of the study
population cluster was calculated. A threshold that in-
cluded all NINDS and NE controls was determined to lie
at 5 IQRs from the third quartile, and 54 SSC cases be-
yond this threshold were excluded as ancestral outliers
(Additional file 3: Figure S3). The final cohort sizes were
1,157 SSC cases, 912 NINDS controls and 1,614 NE
controls.

AASC cases and controls were genotyped using Illu-
mina microarrays, including 550 K, 610 K and 1 M Bead-
Chips, and also filtered to exclude subjects because of: (1)
genotyping call rate <95%, (2) discrepancy of genotyping
data with recorded sex, and (3) Mendelian inconsistencies
or cryptic relatedness. Ancestry matching between AASC
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cases and controls was conducted using PCA of geno-
typing data for a subset of SNPs common to all arrays;
each case was matched to the nearest control using a
greedy algorithm. The final cohort sizes were 1,039 cases
and 863 controls, all of European descent.

Sanger sequencing of Simons Simplex Collection cases
and NINDS controls

PCR primers were designed to flank all coding exons
and splice sites of EFR3A and CASK (Additional file 4:
Table S1). Then 10 ng lymphoblastoid cell line-derived
genomic DNA served as template in a 25 ul PCR con-
taining 1x PreMix D buffer (Epicentre Biotechnologies,
Madison, WI, USA), 048 puM each forward and reverse
primer, and 0.36 pL Taq polymerase/0.072 uL Pyrococcus
furiosus (PFU) polymerase. Both enzymes, which were
synthesized in house, were used to permit proofreading
during PCR and reduce Tag-induced mutations. A
Tetrad2 Peltier Thermal Cycler (Bio-Rad, Hercules, CA,
USA) was programmed as follows: 95.0°C/5 min; 40 cycles
of 95.0°C/30 sec, 60.0°C/30 sec and 72.0°C/60 sec; 72.0°C/
10 min. PCR products were visualized by agarose gel
electrophoresis and sent to Beckman Coulter Genomics
(Danvers, MA, USA) or the Yale Keck Biotechnology
Resource Laboratory (New Haven, CT, USA) for Sanger
sequencing. Chromatograms were aligned and analyzed
using Sequencher v4.9 (Gene Codes, Ann Arbor, MI,
USA). We obtained a 96% sequencing success rate for
both cases and controls. All potential rare (<1% frequency)
nonsynonymous variants were confirmed by a second
round of PCR and Sanger sequencing in forward and re-
verse directions, using blood-derived genomic DNA for
SSC cases since it was available. Segregation analysis of
confirmed variants was performed using blood-derived
genomic DNA from all family members, which were only
available for SSC cases.

Whole-exome data from northern European controls and
ARRA Autism Sequencing Collaboration cases/controls
For the NE controls, we examined whole-exome sequen-
cing data. Greater than 98% of the EFR3A coding and
splice site sequence was covered by at least eight in-
dependent reads. For variant calling, a minimum read
threshold of only one independent read was used to
minimize the liability for false negatives. All coding and
splice site variants with a SAMtools SNP quality score >50
were subjected to confirmation by PCR and Sanger se-
quencing of whole-genome amplified DNA.

We also examined whole-exome sequencing data for
AASC cases and controls (generated by the Broad Insti-
tute and Baylor College of Medicine), which were treated
as a matched set and subjected to identical quality con-
trol and variant calling criteria within each site. All
coding and splice site variants were identified after three
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rounds of filtering the whole-exome data for quality con-
trol. Variants were excluded if: (1) they had 210% missing
calls, (2) they had average coverage <17 for Broad cases/
controls and <12 for Baylor cases/controls, and (3) >50% of
minor allele calls had <17 reads or a balance of depth >0.66
for Broad cases/controls and <12 reads or a balance of
depth >0.75 for Baylor cases/controls (balance of depth
being defined as the number of reference reads divided by
the total number of reads). Filtering criteria differed be-
tween the two sites since samples were sequenced on dif-
ferent platforms and the data were processed using
different software packages (Illumina/GATK at Broad and
Solid/AtlasSNP2 at Baylor). AASC case and control va-
riants were not confirmed by Sanger sequencing. How-
ever, given that the cohorts are approximately the same
size and the entire AASC set was subjected to identical
sequencing methods, we anticipated that calling errors
would be randomly distributed across affected and un-
affected individuals.

To assess the novel singleton status of variants identified
in all case and control groups, we queried dbSNP137 and
whole-exome sequencing data from an additional 6,503
individuals from release ESP6500 of the Exome Variant
Server, comprising 4,300 European-Americans and 2,203
African-Americans.

Analysis by conservation measures

We evaluated conservation at the positions of novel non-
synonymous singleton mutations in EFR3A with three
widely used informatics tools: PhyloP (phylogenetic
P values), GERP (genomic evolutionary rate profiling) and
ConSurf. PhyloP scores [14] were obtained from the
UCSC Genome Browser. A PhyloP score >1.3 indicates
P =0.05 for conservation and was used as a threshold to
determine whether a mutation occurred at a conserved
site. GERP scores [15] were obtained from the SeattleSeq
annotation pipeline. A GERP score >5 was used as a
threshold to determine conservation [16]. Regarding Con-
Surf analysis, a multiple EFR3 protein sequence alignment
was constructed using PSI-Blast, which was then edited to
remove partial or redundant sequences and produce a
comprehensive sampling of genetic space. Both EFR3A
and EFR3B were included to increase the number of
sequences available, which totaled 42 (Additional file 5:
Figure S4). The alignment was produced with TCoffee and
sent to the ConSurf server to quantify conservation [17].
The server normalizes the conservation score for each
amino acid such that average positions cluster around
zero; the most conserved residues have negative scores,
and the least conserved are positive.

Structure-based analysis
The crystal structure of the N-terminal fragment (amino
acids 8 to 562) of the Saccharomyces cerevisiae Efr3 was
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recently determined [18]. Yeast Efr3 and human EFR3A
were aligned through amino acid 451, corresponding to
the most conserved portion of Efr3 (Additional file 6:
Figure S5). We created a homology model and found
that secondary structure predictions of the human
EFR3A matched well with the observed secondary struc-
ture of the yeast protein. Based on the crystal structure,
human EFR3A case and control mutations were blindly
assessed for their potential to disrupt protein structure
and function using the following structural criteria
prioritization: first, it was determined whether the mu-
tated residue was located in the protein core or on the
surface as shown by the crystal. If the mutation was lo-
cated in the core, it was then assessed, taking secondary
structure into account, for whether a hydrophilic residue
would be placed in a hydrophobic environment or
whether the mutation changed the residue size, which
could result in a defect in packing the core or misfol-
ding. If the mutation was located on the surface of the
protein, it was then determined whether that area was
well conserved and hence likely to be functionally im-
portant. If so, any change in residue charge and/or size
was categorized as potentially disruptive as these could
affect protein-protein or protein-membrane interactions.
To this end we devised a grading scheme, where dele-
terious variants received a score of 3 or higher. It should
be noted, however, that this grading scheme cannot take
into account interactions of EFR3A that have not been
described to date.

In situ hybridization

Human brain tissue samples were fixed in 4% PFA (Para-
formaldehyde) at 4°C for 2 to 3 days, cryoprotected in
graded sucrose solutions (up to 30%) at 4°C, frozen
at —40°C in isopentane/dry ice, and stored at -80°C.
Frozen samples were cut at 20 um using a Leica CM3050S
cryostat and mounted onto gelatine-coated slides. To pre-
pare complementary RNA probes, cDNA was amplified
with T7 and SP6 promoter-attached primers (T7/forward
primer: TAATACGACTCACTATAGGGAGACGGGCCA
CCATTTGGGAACCT, SP6/reverse primer: GCGAT
TTAGGTGACACTATAGCCAGCACTGTCGGACCTAT
GGA) and used to generate digoxigenin-labeled riboprobes
with T7 RNA polymerase (Roche, Basel, Switzerland) for
the sense probe (negative control) and SP6 RNA polymer-
ase (Roche) for the antisense probe. After acetylation, sec-
tions were hybridized with the riboprobes at 55°C/16 hr.
They were then processed as follows: (1) rinsed in 2x SSC,
(2) incubated with 20 pg/ml RNase A at 37°C/30 min, (3)
washed in high stringency conditions at 60°C, (4) incu-
bated at room temperature (RT)/2 hr with AP-coupled
anti-digoxigenin Fab fragment (Roche) in 1% donkey
serum in TBST, and (5) washed in NTMT buffer (2 x
10 min). Signals were developed in a light-protected
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humidified chamber with NBT/BCIP in NTMT buffer/
2 mM levamisole solution at RT overnight. The sections
were rinsed in TE and cover-slipped using a crystal aque-
ous mounting medium (Accurate Chemical and Scientific
Corporation, Westbury, NY, USA). SSC: saline-sodium cit-
rate buffer, AP: alkaline phosphatase, TBST: Tris-buffered
saline, 0.1% Tween-20, NTMT: NaCl + Tris-HCI + Mag-
nesium chloride + Tween-20, NBT: nitro-blue tetrazolium,
BCIP: 5-bromo-4-chloro-3’-indolyphosphate, TE: Tris-
EDTA buffer.

Gene co-expression analysis

Using data from Kang et al. [19], Spearman correlation
was performed between expression levels of EFR3A and
M12 genes [20] and between EFR3A and all 15,132
genes expressed in the human brain [19]. Of the 432
unique genes in M12, 356 had expression data in the
array platform used by Kang et al. [19], and these were
used to perform the analysis (Additional file 7: Table S2).
These analyses were also performed with ten additional
genes: ACTB (a housekeeping gene), CHDS8, DYRKIA,
EFR3B (a homologue), GRIN2B, KATNAL2, NRXNI,
SCN2A, SHANK?2 and SHANK3. The median expression
correlation coefficients for the 11 genes when compared
to M12 and all brain-expressed genes are shown in
Additional file 8: Table S3. To show the distribution of
the correlation coefficients, kernel density plots were
generated using the sm.density.compare function in the
sm package in R with the smoothing parameter 4 =0.1.
The entire process was repeated for an additional three
modules: M2, M3 and M16 genes [21].

Statistical analysis
All P values for mutation burden, conservation measures
and crystal structure analysis were calculated by the Fisher
exact test. We used the right-tailed test based on the
hypothesis that there would be a greater number of muta-
tions in cases versus controls and that case mutations
would be more deleterious. Since we initially investigated
two genes, CASK as well as EFR3A, we performed a
Bonferroni correction and multiplied the P value for over-
all mutation burden by two. The initial de novo mutation
F338S identified by whole-exome sequencing was not in-
cluded in calculations of overall mutation burden between
cases and controls but was included when assessing the
potential deleteriousness of case versus control mutations.
To study the relative enrichment of variants at conserved
positions in cases and controls, we conducted the following
analysis. For each novel nonsynonymous singleton variant,
we used cutoff values for three conservation measures to
annotate whether each variant maps to a conserved pos-
ition and is, therefore, potentially deleterious: PhyloP > 1.3
(indicates P=0.05 for conservation), GERP >5 [16] and
ConSurf < 0 (indicates conservation). We also performed a
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permutation test by first creating an input file (Additional
file 9: Table S4) of binary entries, with ‘1’ indicating that
the variant met the cutoff and is functional by that conser-
vation measure and ‘0’ indicating that it did not. For each
measure, we calculated the proportion of individuals car-
rying functional variants in the case and control cohorts.
We then calculated the ratio of the two proportions as the
relative enrichment in cases. We used the largest ratio
among the three measures as the test statistic for the ob-
served data. To estimate the statistical significance, we
adopted the following permutation procedure. For each of
10,000 permutations, we permuted the case and control
labels of the subjects. Based on the case and control
groups defined by the permuted labels, we repeated the
same relative enrichment ratio calculation and estimated a
P value for enrichment of deleterious mutations in cases.
The nonparametric Wilcoxon test was used to calculate
the P value for the difference in median expression cor-
relation coefficients between EFR3A/M12 and EFR3A/all
brain-expressed genes.

Western blot analysis of mouse tissues

Female C57BL/6 mice (Jackson Laboratory, Bar Harbor,
ME, USA) were euthanized at approximately 21 days after
birth. Organs were isolated, homogenized in lysis buffer
(1% Triton X-100, 150 mM NaCl, 20 mM Tris, 0.5 mM
EDTA (Ethylenediaminetetraacetic acid), pH 7.4, sup-
plemented with Complete EDTA-free protease inhibitor
tablet (Roche)), centrifuged for 10 min at 16,000 g, and the
supernatant was reserved. Protein concentrations were
normalized using the bicinchoninic acid (BCA) assay
(Thermo Pierce, Rockford, IL, USA). The samples were
analyzed by Western blot (30 pg sample/lane), probing
with anti-EFR3A (Ab2, Sigma, St Louis, MO, USA) or
anti-GAPDH (1D4, GeneTex, Irvine, CA, USA) antibodies.
For the EFR3A Western blot, a goat HRP (horseradish
peroxidase)-conjugated anti-rabbit secondary antibody
(Bio-Rad, Hercules, CA, USA) was used, and the blot was
developed using SuperSignal West Pico chemiluminescent
reagent (Thermo Pierce). For the GAPDH Western blot,
an IRDye 800CW-conjugated anti-mouse secondary anti-
body (LI-COR Biosciences, Lincoln, NE, USA) was used,
and the Western blot was scanned on an Odyssey imaging
system (LI-COR Biosciences).

Verification of EFR3A antibody specificity

The specificity of the EFR3A antibody (Ab2, Sigma) was
verified by Western blot analysis of HeLa cell lysates treated
with siRNA duplexes (Integrated DNA Technologies,
Coralville, TA, USA) targeted against human EFR3A or
negative control siRNA, termed NCI1. The siRNA se-
quences are shown in Additional file 10: Table S5. HelLa
cells were transfected with the appropriate siRNA duplex
(from a 20 puM stock in 30 mM HEPES (4-(2-Hydroxyethyl)
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piperazine-1-ethanesulfonic acid, N-(2-Hydroxyethyl)pi-
perazine-N’-(2-ethanesulfonic acid)), 100 mM potassium
acetate) using RNAIMAX (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s instructions, and
after 6 hr, the media was exchanged for regular growth
media. After 3 days, the cells were collected, dissolved in
lysis buffer (1% Triton X-100, 150 mM NaCl, 20 mM Tris,
0.5 mM EDTA, pH 74, supplemented with Complete
EDTA-free protease inhibitor tablet (Roche)), centrifuged
for 10 min at 16,000 g, and the supernatant was reserved.
Protein concentrations were normalized using the BCA
assay (Thermo Pierce). The samples were analyzed by
Western blot (50 pg sample/lane), probing with anti-
EFR3A (Ab2, Sigma) or anti-a-tubulin (B-5-1-2, Sigma)
antibodies. IRDye 800CW-conjugated anti-rabbit and
anti-mouse secondary antibodies (LI-COR Biosciences)
were used, and the Western blots were scanned on an
Odyssey imaging system (LI-COR Biosciences).

Results
To test our hypothesis that mutations in EFR3A and/or
CASK confer risk for ASD, we performed Sanger
sequencing of all coding exons and splice sites of both
genes in 705 comprehensively phenotyped European
cases from the SSC. All rare (<1% frequency) nonsy-
nonymous variants were confirmed by a second round
of Sanger sequencing. We focused on novel alleles seen
only once (singleton variants) and not present in two
large databases, dbSNP137 and Exome Variant Server,
the latter of which had 6,503 exomes. We reasoned that
this strategy would most likely identify deleterious sub-
stitutions subject to purifying selection and provide,
along with case/control matching for ancestry, the most
robust protection against population stratification [22].
In CASK, only two variants met these criteria among
all 705 cases (Additional file 11: Table S6). In light of the
low cumulative allele frequency and anticipated low
power to detect an effect, we did not pursue this gene
further. We identified six novel nonsynonymous single-
ton mutations in EFR3A (Table 1 and Additional file 12:
Table S7) and, consequently, we proceeded to screen this
gene in several cohorts for which we had access to DNA
or whole-exome sequencing data. We identified an
additional 1,491 European cases: (1) 452 from the SSC
were subjected to Sanger sequencing and (2) 1,039 from
the AASC had whole-exome sequencing data, for a total
of 2,196 cases. We identified a total of 3,389 European
controls: (1) 912 NINDS neurologically normal European
controls matched to SSC cases via PCA of genotyping
data and subjected to Sanger sequencing, (2) 1,614 neuro-
psychiatrically unscreened controls of NE origin matched
to SSC cases and who had whole-exome sequencing data,
and (3) 863 from the AASC with whole-exome sequen-
cing data. For the NE control exomes, a minimum read



Table 1 Novel nonsynonymous singleton mutations in EFR3A

Cohort Exon Amino acid change® Chromosome hg19 Reference Variant ID Sex Father Mother Sib PhyloP  GERP ConSurf Crystal
Cases (n=2,196) SSC cases (n=705)

3 R70C 8 132957112 C T 12093.p1 M + - n/a 295617 573 -1.51 Deleterious

4 L118pP 8 132958867 T C 12610.p1 M+ -F 321686 547 073 Deleterious

7 G243A 8 132968104 G C 11572.p1 M - + +F 6387 5.64 -0.291 Benign

10 F3385° 8 132982744 T C 11379.p1 F - - -F 458456 554  —1.107  Deleterious

15 1534T 8 132996411 T C 11473.p1 M- + +F 478917 602 -0.113 n/a

15 1576_A577ins| 8 132996539 * LATT 11577.p1 M - +F 3628 5.03 0.043 n/a

22 T785A 8 133015525 A G 11808.p1 F - + -F3.02491 427 -0312 n/a

SSC cases (n=452)

5 F123L 8 132962216 T C 13507.p1 M - + -M 486423 551 -1.377 Deleterious

7 G2165fs*12¢ 8 132968022 * ITCGCATA  11027.p1 M- + -M 6995 607  —1.591 Deleterious

AASC cases (n=1039)

3 K50E 8 132957052 A G 20094 M n/a 532367 555 -1.59 Deleterious

9 A321S 8 132980647 G T 00HI1409C M n/a 3.10583 551 —0.66 Benign

10 V337L 8 132982740 G C O00HITS33A M n/a 632607 554 -0.986 Benign

14 D504G 8 132991604 A G 06C57233 M n/a 441785 506 -0.002 n/a

14 L508P 8 132991616 T C 07C71126 M n/a 419838 506 0349 n/a

14 1510V 8 132991621 A G 20072 M n/a 207681 3.88 0.088 n/a

15 Q528R 8 132996393 A G 98HI0204A M n/a 521937 602 0.08 n/a

17 Me46V 8 132998507 A G 08C73985A M n/a 213232 465 2129 n/a
Controls (n=3,389) NINDS controls (n=912)

2 P14R 8 132952776  C G ND11540 M n/a 586267 593 —1.264 Benign

NE controls (n=1,614)

5 R161*¢ 8 132962330 C T S19G8 M n/a 6.995 607  —1.591 Deleterious

6 M194V 8 132966156 A G S16H7 F n/a 534254 573 -0.985 Benign

9 E320D 8 132980646 G T S6G2 F n/a 106245 23 —0.162  Benign

10 N354D 8 132982791 A G S6B11 M n/a 0272244 0403 1.188 Benign

13 T451M 8 132991119 C T S4H5 M n/a 272643 571 0.289 Benign

15 R532W 8 132996404 C T S1B3 F n/a 0659283 0794 1218 n/a

15 D570G 8 132996519 A G S15E2 F n/a 521937 602 0169 n/a

L €/1/G/:US1U0D/WOD WSIIN.IR|Nd3[oW MMM//:d1ny

LE:S ‘P 1LOT WsnNy Jpjnaajoyy b 12 eidno
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Table 1 Novel nonsynonymous singleton mutations in EFR3A (Continued)

AASC controls (n=863)

3 G55C 8 132957067 G T
4 F100L 8 132958812 T C
8 D268G 8 132971858 A G
15_16 7 (5" splice site)® 8 132996549 T C

04C27095A
05C42103
05C42750
05C45515

_ﬂ_ﬂz_ﬂ

n/a
n/a

n/a

6.81431
482034
4.99605
6.995

573
547
5.64
6.07

-1.321
-0.879
0.396

—1.591

Benign
Benign
Benign

n/a

@All mutations are single alleles, i.e., heterozygous.
PF338S is the initial de novo mutation identified by whole-exome sequencing.

For 1576_A577insl, PhyloP, GERP and ConSurf scores were derived by averaging the scores of the adjacent positions.

%These mutations were assigned the maximum conservation scores found for any position in EFR3A.
*Under the Reference column indicates absence of the insertion/deletion variant.

AASC, ARRA Autism Sequencing Collaboration; F, female; GERP, genomic evolutionary rate profiling; M, male; n/a, not applicable; NE, northern European; NINDS, National Institute of Neurological Disorders and Stroke;

PhyloP, phylogenetic P values; SSC, Simons Simplex Collection.
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threshold of only one independent read was used to
identify variants in an effort to minimize false negatives.
For the AASC dataset, Broad cases/controls and Baylor
cases/controls were matched and evaluated using identical
variant-calling approaches and filtering criteria within
each site. All rare nonsynonymous variants in SSC cases,
NINDS controls and NE controls were confirmed by
Sanger sequencing; confirmations were not available for
case and control AASC variants.

The analysis of a total of 2,196 cases and 3,389 controls
demonstrated that novel nonsynonymous singleton muta-
tions in EFR3A were twice as frequent in cases compared
to controls. However, the P value was not statistically
significant when corrected for the investigation of two
genes since we initially analyzed CASK as well as EFR3A
(16/2,196 cases and 12/3,389 controls; P =0.084, odds
ratio = 2.065, 95% confidence interval =0.924 to 4.652,
Fisher exact test, right-tailed). Since the combination of
low allele frequency and high conservation has been
shown to provide high sensitivity and specificity for pre-
dicting functionality in rare variant studies, in contrast to
in silico prediction programs [23], we evaluated conserva-
tion with three widely used informatics tools: PhyloP,
GERP and ConSurf. All found significantly more case
variants mapping to conserved positions (Tables 1 and 2).
Furthermore, using 10,000 permutations of the cases and
controls to test the significance of the enrichment of dele-
terious mutations in cases, we calculated a P value of
0.0077. We evaluated family data from SSC subjects and
found that all newly identified variants were transmitted.
Whole-exome data for only two of these subjects (11379.
pl and 11808.p1) have now been reported; neither has a
de novo loss-of-function mutation which might contribute
to their phenotype. SSC case 11808.p1 does have a novel
de novo missense mutation (N160S) in DGCR14 (DiGeorge
Syndrome Critical Region Gene 14), which has not been
associated with ASD or intellectual disability [24]. We also
determined that all of the SSC subjects except one (13507.
pl) have undergone genome-wide copy number variant
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(CNV) analysis; none have de novo CNVs that might bet-
ter explain their phenotype [25].

We took advantage of the recently available crystal
structure (Protein Data Bank ID 4N5A) of the N-terminal
fragment of S. cerevisiae Efr3 [18] to map the human mu-
tations (Figure 1) and determine their potential to disrupt
protein structure and function, blinded to case/control
status. Because the C-terminal portion is not well con-
served, only mutations up to and including amino acid
451 could be evaluated with high confidence. (The full
length EFR3A protein has 821 amino acid residues.) Every
mutation that was assessed to be deleterious as informed
by the crystal structure was a case variant, except R161%,
which is assumed to be damaging (Table 1 and Additional
file 13: Table S8). R161* was found in an NE control for
whom neuropsychiatric information is unavailable, so we
cannot determine if this mutation is associated with any
neuropsychiatric condition. Thus, crystal structure ana-
lysis also identifies a significantly greater number of dele-
terious mutations in cases than controls (P =0.017, odds
ratio = 9.282, 95% confidence interval = 1.119 to 204.784,
Table 2). As would be expected, all of these deleterious
mutations are also at highly conserved positions as per
PhyloP, GERP and ConSurf. Interestingly, the reverse is
not always true, ie., there are mutations at highly con-
served positions which were assessed to be benign in light
of the crystal structure. Therefore, having knowledge of
the three-dimensional structure of Efr3 enriches our ana-
lysis by providing more biological information to evaluate
the deleteriousness of mutations. We also noted for sub-
jects with family data, deleterious mutations as per the
crystal structure are not shared by the unaffected siblings
(Table 1).

EFR3A is a member of the EFR3 family of genes, con-
served throughout eukaryotes and essential for viability
[7]. The Drosophila melanogaster homologue, rolling
blackout (RBO), is highly expressed in the nervous system
[26], is enriched at the neural synapse [27], and was pro-
posed to regulate phospholipase C signaling [26]. RBO has

Table 2 Statistics for novel nonsynonymous singleton mutations in EFR3A

Cohorts (n) PhyloP > 1.3° GERP > 5°¢ ConSurf < 0¢ Deleterious by crystal
Cases (2,196) Number of mutations® 17 (0.77%) 14 (0.64%) 12 (0.55%) 6 (0.27%)
Controls (3,389) Number of mutations 9 (0.27%) 9 (0.27%) 8 (0.24%) 1 (0.03%)

Pe 0.006 0.030 0.049 0.017

Odds ratio 2930 2410 2.322 9.282

95% confidence interval 1.234-7.109 0.979-6.032 0.885-6.214 1.119-204.784

*The initial de novo mutation was not included in calculations of mutation burden but was in calculations involving severity.

bPhyloP > 1.3 indicates P = 0.05 for conservation.

‘GERP > 5 [16].

dConSurf < 0 indicates conservation.

€All P values are calculated by Fisher exact test, right-tailed. P <0.05 are in bold.
GERP, genomic evolutionary rate profiling; PhyloP, phylogenetic P values.
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Figure 1 Ribbon diagram of S. cerevisiae Efr3 crystal structure. Crystallization of Efr3 revealed a series of HEAT repeats, as we had predicted
bioinformatically. Alignment of yeast Efr3 and human EFR3A was reliable to amino acid 451. Blinded to case/control status, the human mutations
were mapped and analyzed for their potential to disrupt protein structure and function given the three-dimensional crystal structure. Mutations
in red are deleterious and found in cases. (R161% in a control and G2165fs*12 in a case are not shown but presumed to be deleterious.) Mutations

in green are benign and found in cases. Mutations in blue are benign and found in controls.

also been proposed to function as a transmembrane lipase
[26], but structural analysis of Efr3 does not support this
hypothesis (Additional file 14: Table S9) [18]. Instead, it
shows that EFR3/RBO has a scaffold function with the
majority of the protein comprising alpha-helical HEAT
(Huntington, Elongation factor 3, regulatory subunit A
of protein phosphatase 2A, and Target of rapamycin)
repeats.

The tissue expression of EFR3A has not been described,
so we performed Western blot analysis of several mouse
tissues and found that EFR3A is broadly expressed, inclu-
ding in the brain (Additional file 15: Figure S6). We also
analyzed its expression using exon-array data from a study
of the spatio-temporal transcriptome of the human brain
[19]. There is a steady increase in EFR3A mRNA levels in
multiple brain regions through fetal development and into
adolescence (Figure 2A). In situ hybridization of adult hu-
man dorsolateral prefrontal cortex revealed the presence
of EFR3A in cortical neurons including pyramidal neurons
(Figure 2B). This pattern is consistent with prior data on
the expression of ASD genes [9,19], as well as functional
annotation of genes that are highly co-expressed with
ASD genes, showing enrichment for a category associated
with the development of cortical projection (pyramidal)
neurons [19].

We next identified the top 100 genes co-expressed with
EFR3A (Additional file 16: Table S10) using the same data-
set [19]. Gene ontology enrichment analysis using the
Database for Annotation, Visualization and Integrated
Discovery (DAVID v6.7) [28,29] revealed synaptic genes,
including SYNJI, the major PtdIns(4,5)P, phosphatase in
the brain [30], as the most significant finding (Figure 2C).
We also compared the expression profile of EFR3A with a
discrete module of co-expressed genes (M12) significantly
associated with ASD in a prior transcriptome analysis of

post-mortem autism and control brains [20]. M12 is
enriched for genes involved in synaptic function, vesicular
transport and neuronal projection and is downregulated
in the autistic brain. We compared the distribution of ex-
pression correlation coefficients between EFR3A and M12
genes (Figure 2D) and between EFR3A and all brain-
expressed genes [19] (Figure 2E). We found that the distri-
bution between EFR3A and M12 genes was significantly
skewed toward positive correlation coefficients compared
to the distribution between EFR3A and all brain-expressed
genes (P<22x107'°, Wilcoxon test). When a similar
analysis was performed on the homologue EFR3B (which
is largely brain-expressed) and eight genes strongly asso-
ciated with ASD from recent CNV and exome studies
[3-6,25], EFR3A was the most strongly correlated with
M12 expression (Figure 2D). We repeated this process
with three additional modules of co-expressed genes (M2,
M3 and M16) identified by a prior analysis of BrainSpan
transcriptome data from normal brains [21]. All are sig-
nificantly associated with ASD candidate genes, although
M2 and M3 are enriched for early fetal transcriptional reg-
ulators affected by de novo loss-of-function mutations in
ASD, while M16, which has significant overlap with M12,
is enriched for synaptic genes upregulated during late
fetal/early postnatal stages and genes harboring inherited
common variants in ASD. As might be expected given its
developmental expression pattern and synaptic function,
EFR3A is positively correlated with M16 (Additional
file 17: Figure S7A; P<22x 107'%, Wilcoxon test) and
negatively correlated with M2 and M3 (Additional file 17:
Figure S7B,C; P < 2.2 x 107%, Wilcoxon test).

Discussion
Our conservation, structure-based functional and expres-
sion analyses suggest a role for rare deleterious EFR3A
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Figure 2 Expression analysis of human EFR3A. (A) Spatio-temporal mRNA expression of EFR3A in the human brain. Line plots show log,-transformed
exon-array signal intensity during prenatal to adult stages. (B) In situ hybridization of EFR3A, using antisense and sense (negative control) probes, in the
dorsolateral prefrontal cortex of 40-year-old human brain. Scale bar, 20 um. (C) Functional annotation of top 100 genes correlated with EFR3A expression.
The dashed line is the threshold for significance, P=0.05. (D) Distribution of expression correlation coefficients of EFR3A and ASD genes with M12 genes
(n=356) [20]. (E) Distribution of expression correlation coefficients of £FR3A and ASD genes with all brain-expressed genes (n=15,132) [19]. The
homologue EFR3B is shown for comparison and ACTB, a housekeeping gene, is included as a negative control.

mutations in the risk for ASD, adding to the emerging
data on specific synaptic functions, including phosphoino-
sitide metabolism, relevant to these disorders. Multiple
resequencing projects for ASD have revealed numerous
rare variants in both cases and controls. Given the over-
representation of de novo loss-of-function mutations in
cases, it is implausible that a subset of damaging missense

mutations does not carry risk as well. However, differen-
tiating relevant functional mutations from the large collec-
tion of neutral background variation remains a challenge.
We have approached this issue by following up an obser-
vation of a de novo mutation in an ASD proband with a
relatively large case/control analysis, relying on diverse ap-
proaches to identify putatively deleterious variants. While
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the overall burden of singleton variants was not impres-
sive, the use of multiple conservation measures and crystal
structure analysis to segregate functional variation showed
consistent evidence for experiment-wide association with
ASD.

Our results would clearly not survive correction for
genome-wide comparisons. Of course, given the distri-
bution of singleton mutations across the genome, this
statistical threshold, if applied to every targeted analysis,
would demand implausibly large case/control samples.
In an effort to skirt this problem, we used an initial ob-
servation in an unbiased exome-wide study to establish
a narrow hypothesis and then relied on an experiment-
wide P value threshold for our case/control analysis. At
present, this seems a reasonable approach to evaluating
single gene association. Additional data on the distribu-
tion of de novo missense mutations in the genome and
the integration of ASD risk associated with varying clas-
ses of mutations [31] with co-expression network data
[11,21] will shed significant light on the contribution of
any one gene to ASD.

Our expression data, combined with evidence for the
involvement of EFR3A in synaptic phosphoinositide me-
tabolism [8], suggest that EFR3A may play an important
role in synaptic function during human fetal brain deve-
lopment. In addition to the significant conservation and
structure-based findings, our analysis comparing the ex-
pression profile of EFR3A with M12 and M16 further sug-
gests that this gene is associated with ASD. Not only are
EFR3A and M12/M16 expression strongly correlated but
EFR3A is also the most strongly correlated in the context
of ASD-associated genes and its homologue EFR3B. Al-
though co-expression data do not prove that a gene causes
a disorder, they can provide another piece of supportive
evidence [11,21]. The determination of when in develop-
ment and in what cell types EFR3A is expressed provides
insight into how EFR3A mutations might contribute to
the pathophysiology of ASD.

A potential limitation of this study is that we combined
data from Sanger sequencing (SSC cases and NINDS con-
trols) and whole-exome sequencing (AASC cases/controls
and NE controls). It is possible that the two techniques
can vyield different sets of variants. As described under
Methods, for the NE controls, we determined that >98% of
the coding and splice site sequences were covered by at
least eight independent reads. To minimize false negatives
in controls that might bias toward an excess of rare muta-
tions in cases, a minimum of only one independent read
was used to identify variants for confirmation. Regarding
the AASC samples, case and control exome data were
subjected to identical variant-calling approaches and
filtering criteria within each site and were, therefore,
treated equally, suggesting that any error should be
randomly distributed between these groups.
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Another limitation is that we did not find additional
de novo mutations in the subjects for whom family DNA
was available (only SSC cases), which would strengthen
the association of EFR3A mutations with ASD. However,
there is abundant evidence that inherited mutations also
contribute to ASD [31]. The presence of SSC case muta-
tions in unaffected parents and/or siblings points to in-
complete penetrance, as expected in complex genetic
disorders such as ASD. The crystal structure analysis
was able to stratify the mutations further by determining
that potentially deleterious variants were generally not
shared by siblings. Although this is an interesting obser-
vation, it is based on a very small number of events (five
SSC case mutations with both sibling data and crystal
structure information) and cannot be assigned statistical
significance. We did observe one premature stop codon
mutation in an NE control as well as in an SSC case, in-
dicating that EFR3A mutations are not sufficient to
cause ASD. However, neuropsychiatric data was not
available for this control cohort. Moreover, the identifi-
cation of well-established ASD-associated variants in un-
screened controls is so commonplace as to be expected
in a study such as this one.

EFR3A is a critical component of a complex containing
a phosphatidylinositol 4-kinase that synthesizes the
plasma membrane pool of the phosphoinositide PtdIns4P,
the direct precursor of PtdIns(4,5)P, [8]. PtdIns(4,5)P, has
a wide variety of direct functions in the central nervous
system, including regulation of exo/endocytosis, ion chan-
nel function, neurotransmitter receptors, and transporters
and nucleation of the actin cytoskeleton [32,33]. Additio-
nally, PtdIns(4,5)P, is a precursor to numerous signaling
metabolites: diacylglycerol and InsP; (via phospholipase C
activity), which are key regulators of Ca** signaling, and
PtdIns(3,4,5)P; (via PI 3-kinase activity), which mediates
many cellular processes such as activation of the Akt/
mTOR signaling pathway [30]. Mutations in PTEN, which
encodes a PtdIns(3,4,5)P3 phosphatase, and in TSCI and
TSC2, which are key effectors in the PtdIns(3,4,5)P3
signaling pathway, have demonstrated the importance of
synaptic phosphoinositide signaling in syndromic forms of
autism (Figure 3) [9,34,35]. Common polymorphisms and
rare CNVs in MET, another gene involved in phosphoi-
nositide metabolism, have implicated this pathway in idio-
pathic ASD as well [36,37].

The identification of rare deleterious mutations in
EFR3A, a gene linked to PtdIns4P synthesis (Figure 3), fur-
ther strengthens the role of phosphoinositide metabolism
in ASD. The precise effects of EFR3A on the levels of vari-
ous phosphoinositides still have to be determined, and an
EFR3A knock-out mouse is not yet available. Delineating
the molecular details and functional significance of inter-
actions between EFR3A and its binding partners will allow
the development of in vitro assays to assess further the
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Figure 3 ASD-related molecules at the synapse. Mutations in proteins in green have been demonstrated to carry risk for idiopathic ASD, and
mutations in proteins in blue cause syndromic forms of ASD. EFR3A has been linked to phosphoinositide metabolism [8].

severity of the variants we report here. Importantly, phos-  Additional files
phoinositide metabolizing enzymes are pharmacologically
targetable [38-40]. The applicability of this approach to-
wards ASD has been shown for the closely connected

Additional file 1: Figure S1. Scree plot of the first 50 components
from principal component analysis identifies three principal components

mTOR pathway in mouse models of tuberous sclerosis that contribute the greatest amount of variation.
[41,42]. Therefore, mutations in EFR3A and perturbations Additional file 2: Figure S2. Three largest principal components of
in phosphoinositide metabolism may point to a potential genotypes for all SSC cases, NINDS controls and NE controls were plotted

avenue for treatment in a subset of ASD patients. against one another. EV, eigenvalue; PC, principal component.

Additional file 3: Figure S3. Interquartile range (IQR) distance around
the median of the study population cluster was calculated. A threshold
Conclusions that included all of the NINDS and NE controls was determined to lie at

. . . 5 1QRs from the third quartile, and 54 SSC cases beyond this threshold
Rare nonsynonymous mutations in LFR3A are 51gn1ficantly were excluded as ancestral outliers. Included samples are in blue;

more common among ASD cases than controls at posi- excluded samples (outliers) are in green. EV, eigenvalue; PC, principal
tions that are conserved and positions that would be dis- component.

ruptive to protein structure and function based on analysis Additiopal file 4: Table S1. Primers used for PCR and Sanger

of the Efr3 crystal structure. These results further impli- sequencind.

cate phosphoinositide metabolism in the pathophysiology
of ASD, a pathway that is pharmacologically targetable.

Additional file 5: Figure S4. Multispecies protein sequence alignment
of EFR3A/B for ConSurf analysis.

Additional file 6: Figure S5. Conservation structure of the EFR3A

Exactly how EFR3A mutations contribute to that patho- protein as determined by ConSurf.
physiology will have to await further delineation of how | Additional file 7: Table S2. List of the genes in M12, M16, M2 and M3
the protein functions and the development of speciﬁc as- and the subset of each which is included in the exon-array platform used

by Kang et al. (2011). These subsets were used for the comparisons made
in Figure 2D,E, and Additional file 17: Figure S7.

Additional file 8: Table S3. Median expression correlation coefficients
Avallablllty of supporting data for ACTB, CHDS8, DYRK1A, EFR3A, EFR3B, GRIN2B, KATNAL2, NRXN1, SCN2A,
. R SHANK2 and SHANK3 compared to M12, M16, M2, M3 and all
NINDS Neurologically Normal Caucasian Control Panel: brain-expressed genes,
[http://ccr.corlell.org/Sectlons/Collectlons/NINDS/DNA Additional file 9: Table S4. Binary entries used for permutation test.

Panels.aspx?Pgld=195&coll=ND/]

says to test their severity.

Additional file 10: Table S5. All rare nonsynonymous CASK variants in

AASC controls: [https://www.nimhgenetics.org/available_ SSC cases.
data/controls/] Additional file 11: Table S6. All rare nonsynonymous EFR3A variants.
NCBI dbSNP: [http://www.ncbi.nlm.nih.gov/snp] Additional file 12: Table S7. Severity of novel nonsynonymous
EVS: [http'//evs gs washington edu/EVS/] singleton £FR3A mutations informed by Efr3 crystal structure.
UCSC Genome Browser: [http’//www genome.ucsc edu/] Additional file 13: Table S8. Molecular modeling of EFR3A protein.
R ) ’ Molecular modeling was accomplished by inputting reference sequences
SeattleSeq: [http://snp.gs.washington.edu/SeattleSeq into the I-TASSER [1,2], Phyre2 [3], Raptor [4] and HHpred [5] web servers.
Annotation138/] The Protein Data Bank identification codes for template structures are

ConSurf: [http://consurf.tau.ac.il/] indicated, with the best matches for ea;h run in bold and.the error
assessment for each server shown. An independent technique for

DAVID v6.7: [http://david.abcc.ncifcrf.gov/] : )
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detecting and scoring HEAT repeats was also used [6]. Using this
technique, three HEAT repeats were detected with an £ value less than
50, the benchmark for significance. Additionally, six HEAT repeats were
detected by the REP server [7].

Additional file 14: Table S9. Top 100 genes co-expressed with EFR3A.

Additional file 15: Figure S6. Expression analysis of mouse EFR3A.
(A) EFR3A is expressed in several mouse tissues, including the brain, as
analyzed by Western blot. (B) EFR3A antibody specificity is verified by
Western blot analysis of lysates from Hela cells treated with control
SIRNA (=) or three different siRNA duplexes against human EFR3A.
Although this antibody works well for Western blots, it does not work
well for immunofluorescence, so we were not able to provide data for
protein subcellular localization.

Additional file 16: Table $10. siRNA sequences used to verify EFR3A
antibody specificity.

Additional file 17: Figure S7. Co-expression analysis of human EFR3A.
Distribution of expression correlation coefficients of EFR3A and ASD
genes with (A) M16, (B) M2 and (C) M3 genes. The homologue EFR3B is
shown for comparison and ACTB, a housekeeping gene, is included as a
negative control.
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