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Abstract

Background: Advanced paternal age is robustly associated with several human neuropsychiatric disorders,
particularly autism. The precise mechanism(s) mediating the paternal age effect are not known, but they are
thought to involve the accumulation of de novo (epi)genomic alterations. In this study we investigate differences
in the frontal cortex transcriptome in a mouse model of advanced paternal age.

Findings: Transcriptomic profiling was undertaken for medial prefrontal cortex tissue dissected from the male
offspring of young fathers (2 month old, 4 sires, n = 16 offspring) and old fathers (10 month old, 6 sires, n = 16
offspring) in a mouse model of advancing paternal age. We found a number of differentially expressed genes in
the offspring of older fathers, many previously implicated in the aetiology of autism. Pathway analysis highlighted
significant enrichment for changes in functional networks involved in inflammation and inflammatory disease,
which are also implicated in autism.

Conclusions: We observed widespread alterations to the transcriptome associated with advanced paternal age
with an enrichment of genes associated with inflammation, an interesting observation given previous evidence
linking the immune system to several neuropsychiatric disorders including autism.
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Background
Advanced paternal age is robustly associated with several
neuropsychiatric disorders, most notably autism [1]. The
mechanism(s) underlying this paternal age effect are not
known, although the accumulation of de novo (epi)gen-
etic changes over time in the male germ line are thought
to be important. Evidence to support this hypothesis
comes from preliminary data showing a higher rate of de
novo mutations [2] and altered DNA methylation at
birth [3] with increasing paternal age in humans, and in-
creased de novo copy number variation (CNV) [4] and
altered brain DNA methylation at imprinted loci in ro-
dent models of advanced paternal age [5].
Gene expression changes associated with aging in

the brain have been investigated largely in terms of
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neurodegeneration and dementia [6], although aging per
se is associated with widespread transcriptional changes
[7]. In a study of aging using mice, for example, brain
samples from the cerebellum and neocortex had in-
creased expression of genes related to inflammatory and
stress responses and decreased expression of genes asso-
ciated with growth and trophic factors, protein turnover,
DNA synthesis and repair, and neurotransmission [8].
Age-associated changes have been observed in numerous
tissue and cell types, including the germ line. Of relevance
to paternal age, an expression study of rats of different
ages identified over 2,800 loci that are differentially
expressed in spermatocytes from older males (18 months)
compared to spermatocytes from young males (4 months);
of note, many genes associated with base excision repair,
nucleotide excision repair, mismatch repair and double
strand break repair were altered in spermatocytes from
older males [9]. In an analysis of RNA from the spermato-
gonial stem cells of mice of four different ages (6 days,
21 days, 60 days and 8 months) using microarrays, 2,819
genes had differential expression between the age groups
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(P < 0.05, fold change >2) including genes previously iden-
tified in gene expression studies of aging in stem cells [10].
Pathway analysis of these genes highlighted an enrichment
of genes involved in DNA repair and oxidative stress,
which is interesting given the known increase in DNA
damage in the spermatozoa of older males. To date, only
one study has looked at gene expression changes associ-
ated with paternal age in humans [11]. In this study of pa-
ternal age and autism, a decrease in the overall variance of
gene expression was observed in the offspring of older fa-
thers, in addition to a downregulation of genes involved in
gene transcription [11]. To date, no research has examined
transcriptomic changes in the brain in the context of ad-
vanced paternal age.

Methods
C57BL/6J mice were bred and maintained in the Bio-
logical Services Unit at the Institute of Psychiatry, Kings
Figure 1 Top-ranked differentially expressed transcripts between the
each probe (associated with the genes AA408296, Muc15 and Lta) are (A) g
log2 transformed signal intensity.
College London, using stocks purchased from Charles
River Laboratories. All animal experiments received the
approval of the local ethical review panel of King’s
College London and were performed in compliance with
the UK’s Animals (Scientific Procedures) Act 1986. The
work was carried out under licence (PPL 70/7184) and
all efforts were made to minimize animal suffering and
to reduce the number of animals used. We used tissue
collected from an experimentally controlled rodent
model of advancing paternal age (described in detail pre-
viously [5]) to examine whether the offspring of older fa-
thers have altered levels of gene expression. Male
offspring of ‘young’ fathers (2 month old, n = 16, four
sires with one litter each) and ‘old’ fathers (10 month
old, n = 16, six sires with one litter each), with at least
two individuals selected from each family, were used in
this study (see Additional file 1 for an overview of the
samples used). All dissections were performed by a
offspring of young fathers and offspring of old fathers. Shown for
roup-level differences and (B) data split by family. The y-axis shows the
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single individual to ensure topographical similarity be-
tween samples. Briefly, brains were removed from the
skull and placed dorsal side down on a wetted filter
paper on a petri dish kept on ice. The cerebral halves
were opened out from the midline, after cutting through
the corpus callosum. Approximately 3 mm3 of tissue
was cut from the anterior part of the frontal lobes (from
bregma 2.46 mm to 1.34 mm [12]), mainly containing
the medial prefrontal cortex including some prelimbic
cortex, infralimbic cortex, cingulate cortex and motor
cortex [13].
Table 1 Probes showing gene expression differences associat

Transcript Probe ID Expression differencea

AA408296 4150356 ↑

Muc15 2120176 ↓

Lta 2900474 ↑

Tslp 6960520 ↑

Zfp35 580168 ↓

Gstm1 4540458 ↑

Rdh20 6840020 ↑

Ccdc90b 6100215 ↑

Sdhc 3290630 ↓

Atp5sl 5270131 ↓

Olfr187 380370 ↓

Cd44 4880138 ↓

Fryl 510059 ↑

Accn1 7330561 ↑

Cd177 670452 ↓

Tspan3 3130497 ↑

Olfr92 2710201 ↑

Shh 2260450 ↑

E130303B06RIK 6250669 ↓

Arhgap6 7550333 ↓

Zc3h18 7380382 ↑

Atg5 3850450 ↓

Nsfl1c 7610433 ↓

Ear12 4540543 ↓

Olfr1366 6860093 ↓

Tnfsf11 2480255 ↑

Lcorl 2470343 ↓

Dus1l 2370138 ↑

Larp4 6400025 ↓

Alg12 3850500 ↑

Ier5l 4900053 ↓

Ccl26 4560164 ↓
aArrows denote direction of change in the offspring of older father compared to th
SEM, standard error of the mean.
High quality RNA (average RNA integrity number
(RIN) 8.4) was isolated using the Qiagen AllPrep DNA/
RNA Micro Kit (Qiagen, Manchester, UK). Gene expres-
sion was quantified using the Illumina Mouse Ref8 V2
array (Illumina, San Diego, CA, USA), which targets ap-
proximately 25,600 transcripts and over 19,100 unique
genes. After stringent quality control and preprocessing,
raw expression data were batch-corrected using the Com-
Bat package [14] before being normalized and analysed
using lumi [15] within the R statistical environment. All
analysis scripts are available on request from the authors.
ed with paternal age (P < 0.001)

P value Mean (SEM) young Mean (SEM) old

3.23 × 10-6 6.62 (0.01) 6.71 (0.01)

7.45 × 10-6 6.5 (0.01) 6.42 (0.01)

7.46 × 10-6 6.52 (0.01) 6.61 (0.01)

3.02 × 10-5 6.41 (0.01) 6.48 (0.01)

1.30 × 10-4 6.99 (0.02) 6.89 (0.01)

1.31 × 10-4 6.57 (0.02) 6.66 (0.01)

1.38 × 10-4 6.48 (0.01) 6.56 (0.01)

1.91 × 10-4 7.1 (0.02) 7.22 (0.02)

2.10 × 10-4 6.48 (0.01) 6.4 (0.02)

2.97 × 10-4 7.76 (0.02) 7.61 (0.03)

3.07 × 10-4 6.59 (0.01) 6.51 (0.01)

3.29 × 10-4 6.64 (0.01) 6.57 (0.01)

3.58 × 10-4 6.57 (0.01) 6.64 (0.01)

3.59 × 10-4 6.69 (0.01) 6.76 (0.01)

3.71 × 10-4 6.51 (0.01) 6.43 (0.01)

3.96 × 10-4 10.33 (0.04) 10.49 (0.03)

4.29 × 10-4 6.47 (0.01) 6.53 (0.01)

4.37 × 10-4 6.71 (0.02) 6.79 (0.01)

4.38 × 10-4 6.67 (0.01) 6.59 (0.01)

4.43 × 10-4 6.45 (0.01) 6.39 (0.01)

5.21 × 10-4 7 (0.01) 7.08 (0.02)

6.10 × 10-4 7.98 (0.02) 7.9 (0.01)

7.45 × 10-4 7.69 (0.02) 7.55 (0.03)

7.47 × 10-4 6.52 (0.01) 6.46 (0.01)

7.69 × 10-4 6.49 (0.02) 6.41 (0.01)

8.20 × 10-4 6.5 (0.01) 6.57 (0.01)

8.27 × 10-4 6.56 (0.01) 6.49 (0.01)

9.30 × 10-4 7.13 (0.01) 7.21 (0.02)

9.59 × 10-4 6.47 (0.01) 6.41 (0.01)

9.79 × 10-4 6.56 (0.01) 6.65 (0.02)

9.82 × 10-4 7.6 (0.02) 7.47 (0.03)

9.94 × 10-4 6.49 (0.01) 6.41 (0.02)

e offspring of younger fathers.



Table 2 Top-ranked biological functions enriched in
probes differentially expressed (P < 0.01) from IPA

Biological function P value

Maturation of dendritic cells 8.99 × 10-5

Influx of phagocytes 1.69 × 10-4

Binding of interferon-stimulated response element 6.43 × 10-4

Damage of oligodendrocytes 7.00 × 10-4

Lack of mesenteric lymph node 7.00 × 10-4

Lack of peripheral lymph node 7.00 × 10-4

Stimulation of hyaluronic acid 7.00 × 10-4

Morphology of tooth 7.56 × 10-4

Activation of myeloid cells 7.78 × 10-4

Clustering of lymph node cells 1.16 × 10-3

Osteoclastogenesis of bone cell lines 1.16 × 10-3

Transmigration of Th1 cells 1.16 × 10-3

Influx of neutrophils 1.21 × 10-3

Proliferation of dendritic cells 1.27 × 10-3

Destruction of joint 1.47 × 10-3

Arrest in cell cycle progression of endothelial cells 1.73 × 10-3

Lack of cervical lymph node 1.73 × 10-3

Organogenesis of lymphoid organ 1.73 × 10-3

Response of carcinoma cell lines 1.73 × 10-3

Extravasation of myeloid cells 1.92 × 10-3

Morphogenesis of neurites 1.97 × 10-3

Induction of neuroglia 2.40 × 10-3

Quantity of IL-5 In blood 2.40 × 10-3

Quantity of multinucleated cells 2.40 × 10-3

Response of lung cancer cell lines 2.40 × 10-3

Activation of monocytes 2.45 × 10-3

Acne 2.48 × 10-3

Formation of osteoclasts 2.60 × 10-3

Mobilization of blood cells 2.63 × 10-3

Activation of phagocytes 2.69 × 10-3

Binding of lymphoma cell lines 2.76 × 10-3

Cell viability of blood cells 2.82 × 10-3

Quantity of tooth 3.17 × 10-3

Activation of macrophages 3.23 × 10-3

Proliferation of B lymphocytes 3.35 × 10-3

Response of connective tissue cells 3.42 × 10-3

Cell movement of dendritic cells 3.88 × 10-3
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Results and discussion
We found numerous differences in gene expression as-
sociated with advanced paternal age. Most notably,
probes associated with three transcripts were found to
be differentially expressed in the offspring of older fa-
thers compared to the offspring of younger fathers with
a false discovery rate (FDR) < 0.1: AA408296 (also known
as Diexf ) (P = 3.23 × 10-6, FDR = 0.06) and Lta (P =
3.23 × 10-6, FDR = 0.06) had elevated expression, whilst
Muc15 (P = 7.46 × 10-6, FDR = 0.06) had reduced expres-
sion (see Figure 1A). Although the absolute differences
in gene expression are small and future work is needed
to ascertain their functional significance, for each of
these differentially expressed transcripts, consistent pat-
terns of altered expression were observed across each of
the old-father families (Figure 1B and Additional file 2).
The top-ranked differentially expressed transcripts (P <
0.001) are listed in Table 1. Strikingly, almost a quarter
of these differentially expressed loci have been previously
implicated in the aetiology of autism, including Gstm1
(deletion in GSTM1 observed in autism case-parent
trios) [16], Ccdc90b (missense mutation associated with
autism in a study of cases and their parents) [17], Cd44
(differential expression in autism discordant monozy-
gotic twins) [18], Accn1 (multiple SNPs associated with
autism in a familial study) [19], Shh (increased serum
SHH expression in autistic patients compared to non-
autistic controls) [20], Dus1l (de novo missense mutation
observed in autism families) [21] and Ier5l (increased ex-
pression in lymphoblast cells from autism patients in
discordant sibling pairs) [22].
Ingenuity pathway analysis (IPA) [23] and the Database

for Annotation, Visualization and Integrated Discovery
(DAVID) [24,25] were used to identify gene pathways and
functions enriched amongst transcripts differentially
expressed in the offspring of old fathers. Of note, IPA iden-
tified a significant enrichment for functional pathways in-
volved in inflammation and inflammatory disease. Table 2
shows the top-ranked biological functions enriched in
probes differentially expressed (P < 0.01) in the frontal cor-
tex in the offspring of old fathers. The top-ranked biological
network regulates immune cell trafficking and cell-to-cell
signalling (Figure 2). Furthermore, the most significantly as-
sociated gene ontology term identified by DAVID was im-
mune response (14 genes, P = 2.87 × 10-4) and the second
most associated cluster (after cytokine activity) included
defence response, response to wounding, inflammatory re-
sponse and acute inflammatory response. This is interesting
given mounting evidence linking the immune system to
several neuropsychiatric disorders including autism [26-28].
A recent transcriptomic analysis of post-mortem brains
from autistic patients, for example, showed changes in gene
networks involved in immune and inflammatory responses
in the frontal and temporal cortices [29].
In addition to identifying group-level variation be-
tween the offspring of old and young fathers, we also ex-
amined family-specific gene expression differences, as
many of the genetic (or epigenetic) alterations believed
to underlie the paternal age effect in autism are thought
likely to be sporadic de novo events occurring in single



Figure 2 Top-ranked gene network. The network was derived from Ingenuity Pathway Analysis of differentially expressed genes in the
offspring of older fathers in a mouse model of advanced paternal age. This network is involved in immune cell trafficking and cell-to-cell
signalling. Different shapes relate to different molecule types. The key from Ingenuity can be found at [30].
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litters. We compared the average transcript level for all off-
spring within each family to the average across all offspring
of young fathers. We found a 1.8-fold enrichment in the
number of family-specific significant gene expression differ-
ences in the offspring of older fathers (average 426 differen-
tially expressed genes) compared to the offspring of young
fathers (average 234 differentially expressed genes) (P <
0.001). Significant probes for each of the six old-father fam-
ilies are listed in Additional file 3. Of note, a number of
probes were differentially expressed in the offspring of
more than one advanced-age father including probes repre-
senting Myst1,Tnfsf11 and Fryl (see Additional file 4).

Conclusions
We present evidence for transcriptomic differences in
the medial prefrontal cortex of offspring of old fathers
compared to the offspring of young fathers, including
for genes previously implicated in autism, a neuropsychi-
atric disease epidemiologically associated with advanced
paternal age, and an enrichment of loci involved in the
inflammatory response. Previous studies of gene expres-
sion changes associated with age in the mouse brain
have shown enrichment for genes associated with the in-
flammatory response [8], although this is the first study
to examine differences associated with advanced paternal
age. Future work will examine whether these expression
differences result from de novo genetic (or epigenetic) al-
terations occurring in the sperm of older fathers.

Availability of supporting data
The data set supporting the results is available in the
Gene Expression Omnibus repository (Currently await-
ing upload) or downloaded from our webpage http://
epigenomicslab.com/Paternal Age data.rar.

http://epigenomicslab.com/Paternal%20Age.html
http://epigenomicslab.com/Paternal%20Age.html
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Additional files

Additional file 1: Overview of the samples used in this study.

Additional file 2: Significant gene expression differences for
individual offspring split by sire for ‘young’ and ‘old’ fathers were
seen for (A) AA408296, (B) Muc15 and (C) Lta.

Additional file 3: Top-ranked differentially expressed transcripts
(P < 0.001) within each of the six families with an old father. Shown
for each transcript is the corresponding rank in the overall old vs young
father group comparison.

Additional file 4: Comparison of the top-ranked differentially
expressed transcripts (P < 0.001) across each of the six families with
an old father. Shown for each transcript is the corresponding rank in
the overall old vs young father group comparison. Empty cells indicate a
non-significant difference.
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