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Abstract

Background: Autism spectrum disorder (ASD) is well recognized to be genetically heterogeneous. It is assumed
that the genetic risk factors give rise to a broad spectrum of indistinguishable behavioral presentations.

Methods: We tested this assumption by analyzing the Autism Diagnostic Interview-Revised (ADI-R) symptom
profiles in samples comprising six genetic disorders that carry an increased risk for ASD (22q11.2 deletion, Down’s
syndrome, Prader-Willi, supernumerary marker chromosome 15, tuberous sclerosis complex and Klinefelter
syndrome; total n = 322 cases, groups ranging in sample sizes from 21 to 90 cases). We mined the data to test the
existence and specificity of ADI-R profiles using a multiclass extension of support vector machine (SVM) learning.
We subsequently applied the SVM genetic disorder algorithm on idiopathic ASD profiles from the Autism Genetics
Resource Exchange (AGRE).

Results: Genetic disorders were associated with behavioral specificity, indicated by the accuracy and certainty of
SVM predictions; one-by-one genetic disorder stratifications were highly accurate leading to 63% accuracy of correct
genotype prediction when all six genetic disorder groups were analyzed simultaneously. Application of the SVM
algorithm to AGRE cases indicated that the algorithm could detect similarity of genetic behavioral signatures in
idiopathic ASD subjects. Also, affected sib pairs in the AGRE were behaviorally more similar when they had been
allocated to the same genetic disorder group.

Conclusions: Our findings provide evidence for genotype-phenotype correlations in relation to autistic
symptomatology. SVM algorithms may be used to stratify idiopathic cases of ASD according to behavioral
signature patterns associated with genetic disorders. Together, the results suggest a new approach for
disentangling the heterogeneity of ASD.
Background
Autism spectrum disorder (ASD) is a behaviorally de-
fined syndrome characterized by variable abnormalities
in social interactions and communication, in association
with restricted interest patterns and unusual stereotyped
behaviors. There has been a concerted effort over the
last 20 years to identify causal genetic risk factors and as
a result, an increasing number of rare, highly penetrant
genetic variants are being implicated [1]. When present,
these rare variants are thought to account for a large
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proportion of an individual’s genetic liability to the con-
dition. Currently, specific genetic etiologies, including
rare single nucleotide and copy number variants (CNVs)
as well as larger chromosomal variations, can be identi-
fied in around 15 to 20% of patients [2-5]. These find-
ings highlight the complexity of the genetic architecture
and heterogeneity of ASD and indicate that by using
standard case–control designs, extremely large sample
sizes will be required to unravel the heterogeneity and
map the dysregulated signaling pathways involved in the
pathophysiology of ASD [4,6-9].
The variability in phenotypic expression of autism ob-

served in monozygotic twin pairs, coupled with the evi-
dence from molecular genetic studies supporting a
polygenic multi-factorial liability model has led to the
recognition that the many genetic risk factors for autism
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give rise to a broad spectrum of behavioral presentations
and hence the concept of autism as a spectrum disorder.
The adoption of this model has led to an implicit as-
sumption that specific genotype-phenotype correlations
are unlikely to exist. However, there is evidence that
ASD symptoms may be dissociable at the genetic level.
Different genetic linkage regions have been obtained for
social interaction and repetitive behavioral domains in
ASD patients [10], and distinct developmental trajector-
ies of social and repetitive behavior exist in the ASD
population [11]. Moreover, in recent years, a growing
interest has developed in the possibility that particular
genetic disorders may give rise to characteristic patterns
of autistic symptomatology. This interest is based on the
assumption that perturbations in associated pathophysio-
logical pathways would lead to relatively constrained and
more specific phenotypic outcomes [12]. Indeed, a num-
ber of recent studies, involving a variety of genetic condi-
tions including 16p11.2 and 7q11.23 CNVs, Williams
syndrome, fragile X syndrome and neurofibromatosis,
have indicated the existence of genetic disorder-specific
behavioral profiles that encourage further efforts in this
direction [4,13-16]. Building on these findings, we postu-
lated that well-defined genetic conditions could give rise
to relatively distinct patterns of autistic symptomatology.
The designation of these patterns may be relevant to dis-
sect ASD heterogeneity as other risk factors that perturb
converging pathophysiological pathways, for example re-
lated to the genetic conditions, might lead to similar pat-
terns of autistic symptomatology.
In the present study, we have undertaken a proof of

concept study to determine if these genotype-phenotype
correlations exist and whether they could be useful to
disentangle the heterogeneity of ASD and complement
future genetic studies. Support vector machine (SVM)
learning was used to analyze ‘signatures’ of autistic
symptomatology in six genetic developmental disorders
associated with an increased risk for ASD [17-20]. Based
on the premise that other risk factors which dysregulate
the same pathways may give rise to similar ‘signature’
patterns of behavior, we aimed to apply the SVM algo-
rithms derived from genetic disorders to cases of idio-
pathic ASD. Finally, we investigated whether the SVM
algorithm would detect enhanced behavioral similarity
in affected sib pairs from the Autism Genetics Resource
Exchange (AGRE) multiplex families. Figure 1 provides
an overview of the different steps involved in the study.

Methods
Subjects
The six genetic disorders we included in the study were:
22q11.2 deletion syndrome (22q11DS), Down’s syndrome
(DS) [21], Prader-Willi syndrome (PWS), supernumerary
marker chromosome 15 (SMC15), tuberous sclerosis
complex (TSC) and Klinefelter syndrome (XXY); total n =
322 cases, groups ranging in sample size from 21 to 90
cases. Cases were recruited through patient associations/
charities or centers for clinical genetics or pediatrics as
part of a collaborative effort between the Department of
Psychiatry of the University Medical Centre in Utrecht in
the Netherlands and the Institute of Psychiatry, King’s
College London in the UK. Appropriate local ethical board
approval was obtained (Medical Research Ethics Commit-
tee, METC, of the University Medical Centre in Utrecht
and the College Research Ethics Committee, CREC, in
London). Informed consent for each participant in the co-
horts was obtained and included the use of data for the
analysis we carried out for this paper. The genetic disor-
ders had been diagnosed through clinical genetic centers
and confirmed by routine molecular and cytogenetic ana-
lysis. The total sample consisted of 322 verbal subjects.
Each of the six genetic disorders has previously been
shown to be associated with an increased risk of ASD
[6,7,22-25]. The cases were drawn from studies that had
originally been designed to elucidate the behavioral phe-
notypes associated with each of the six genetic disorders
[22-27]. As far as possible, the samples were ascertained
without reference to the presence of ASD. For more de-
tails on recruitment procedures and inclusion criteria for
the genetic disorder subtypes please see previous publica-
tions [22-26]. All subjects were included in the analyses,
regardless of the presence of an ASD diagnosis, in order
to evaluate the widest range of symptom profiles. How-
ever, for technical reasons concerning the measurement of
ASD symptomatology, only verbal individuals were in-
cluded in the analyses. Estimates of intellectual abilities
were available for the majority of subjects (>80%) and had
been assessed by different standardized measures accord-
ing to age and ability level [28-32]. Table 1 shows the sam-
ple characteristics.
The AGRE database was used for the selection of idio-

pathic subjects (http://www.agre.org) [33,34]. AGRE
cases were included in the analyses if they fulfilled Aut-
ism Diagnostic Interview-Revised (ADI-R) criteria for an
ASD and complete ADI-R algorithm data were available
(see criteria). All verbal simplex probands in the AGRE
cohort with complete ADI-R algorithm data and scoring
above the ASD threshold (n = 375) were assigned the
label ‘AGRE0’. Among the multiplex families we identi-
fied all verbal affected sib pairs. Within these affected
pairs one sib was allocated to ‘AGRE1’ while the other
was allocated to ‘AGRE2’. Therefore, AGRE1 and AGRE2
consisted of those verbal subjects with ASD with at least
one related verbal sibling with ASD (both n = 433).

Measures
Autism symptom variables were extracted from the
ADI-R which was used to interview the parents of each

http://www.agre.org
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Figure 1 Overview of the different steps undertaken in the study. Step 1: development of SVM classifier to assess the presence and strength
of behavioral signatures among genetic syndromes. Step 2: application of the classifier derived in step 1 to AGRE samples to test if similarity in
behavioral signatures can be detected among idiopathic ASD subjects. Step 3: application of classifier derived in step 1 to sibling pairs with
idiopathic ASD (AGRE) to test relative familiality of behavioral signatures derived from genetic syndromes. AGRE, Autism Genetics Resource
Exchange; ASD, autism spectrum disorder; SVM, support vector machine.
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subject [35]. The ADI-R is an established interview
schedule for assessing autism diagnoses but may also be
used to assess profiles of autistic symptomatology
[36,37], and as phenotype variables in large genetic
population studies of ASD [38-41]. The interview fo-
cuses on identifying key symptoms that characterize the
syndrome [12,36,37]. A subset of 37 items from the
ADI-R is used to create a diagnostic algorithm, which
documents behaviors reported between the 4th and 5th
birthday, regarded as the optimal window to detect
ASD. As a consequence, the use of the diagnostic
algorithm data minimalizes the possible confound of
age-related developmental effects on symptomatology.
ADI-R items are scored as: 0, no ASD behavioral symp-
tom present; 1, specified behavior definitely present but
not clearly enough to warrant a code of 2; or 2, specified
ASD symptom definitely present. In addition, for some
items a code of 3 is given, if the behavior impacts mark-
edly on or disrupts family life. Accordingly, when com-
puting the algorithm scores, a code 3 is recoded as a 2.
For this study, we used these algorithm scores, with a
range of 0 to 2 instead of 0 to 3, to assign equal weight
to all items entered in the analyses. Because certain
symptoms of the communication impairments charac-
terizing ASD can only be observed in verbal individuals,
there are separate scores for verbal and non-verbal indi-
viduals. An overview of the description of the ADI-R
items and the ADI-R domains of the algorithm is pro-
vided in Table 2. The classification of an ASD in this
Table 1 Characteristics of the total genetic disorder sample

Genetic
disorder

N Age
(months)

ASD

Total Female Male Yes No

22q11DS 90 42 48 162.5 ± 33.6 40 50

Down’s 21 16 5 169.1 ± 32.6 6 15

PWS 88 48 40 191.9 ± 141.0 20 68

SMC15 22 8 14 161.4 ± 103.6 19 3

TSC 50 31 19 126.2 ± 74.0 22 28

XXY 51 0 51 145.4 ± 41.4 16 35

Total 322 145 177 123 199

Average 162.7 ± 89.8

Data provided are mean values and, if applicable, standard error of the means. ADI
qualitative abnormalities in communication; and III, restricted, repetitive and stereo
Diagnostic Interview-Revised; ASD, autism spectrum disorder; Down’s, Down’s syndr
15; TSC, tuberous sclerosis complex; XXY, Klinefelter syndrome.
study was based on ADI-R criteria used in genetic stud-
ies and the AGRE collection: ASD is diagnosed when
scores in all domains are met or when scores are met in
two core symptom domains, in addition to the ‘age of
onset’ domain, but are one point away from meeting
autism criteria in the one remaining core symptom do-
main [35,42]. Reliability of the ADI-R in a population
with mild to moderate mental retardation has been
established [43].

Statistical analysis
Standard principal component analysis (PCA) of ADI-R
item scores was used to investigate the extent of overlap be-
tween the symptom profiles of the different genetic groups.
The SVM method was used as a supervised learning

method (incorporating the knowledge of the genotype) to
classify genotype membership on the basis of ADI-R item
scores. SVM is currently one of the most popular machine
learning methods used in data mining, due to its firm the-
oretical foundation and proven superiority in applications.
With regards to SVM, a radial basis kernel function was
used, with optimal gamma and cost parameter values de-
termined in a nested n-fold or, equivalently, leave-one-out
cross-validation (LOOCV) procedure, n being the number
of observations in the sample. Each observation in turn
was left out of the sample, and an SVM classifier was opti-
mized and built on the remaining n − 1 observations. In
this way, an independent assessment of correctness of the
predicted class can be achieved for each observation in the
ADI-R scores per domain and total scores IQ

I II III Total

9.8 ± 6.4 7.7 ± 4.8 2.5 ± 2.2 20.0 ± 12.0 67.0 ± 14.1

7.2 ± 4.4 6.8 ± 3.8 3.2 ± 2.0 17.2 ± 8.6 49.5 ± 11.9

7.9 ± 5.1 5.7 ± 4.5 2.8 ± 2.0 16.3 ± 10.1 70.9 ± 16.3

15.6 ± 6.0 13.6 ± 5.5 6.5 ± 2.4 35.7 ± 12.2 51.0 ± 19.0

12.0 ± 9.0 9.6 ± 6.8 3.7 ± 3.3 25.2 ± 17.9 69.3 ± 27.4

8.5 ± 6.0 8.8 ± 5.4 2.3 ± 2.1 19.6 ± 12.0 80.4 ± 13.9

9.6 ± 6.7 8.0 ± 5.6 3.1 ± 2.5 20.6 ± 13.4 68.6 ± 19.2

-R domains: I, qualitative abnormalities in reciprocal social interaction; II,
typed patterns of behavior. 22q11DS, 22q11.2 deletion syndrome; ADI-R, Autism
ome; PWS, Prader-Willi syndrome; SMC15, supernumerary marker chromosome



Table 2 Autism Diagnostic Interview-Revised (ADI-R)
algorithm items sorted by number

Item
number

Item description ADI-R
domain

31 Use of other’s body to communicate I

33 Stereotyped utterances and delayed echolalia III

34 Social verbalization/chat II

35 Reciprocal conversation II

36 Inappropriate questions or statements II

37 Pronominal reversal II

38 Neologisms/idiosyncratic language II

39 Verbal rituals III

42 Pointing to express interest II

43 Nodding II

44 Head shaking II

45 Conventional/instrumental gestures II

47 Spontaneous imitation of actions II

48 Imaginative play II

49 Imaginative play with peers I

50 Direct gaze I

51 Social smiling I

52 Showing and directing attention I

53 Offering to share I

54 Seeking to share enjoyment with others I

55 Offering comfort I

56 Quality of social overtures I

57 Range of facial expressions used to communicate I

58 Inappropriate facial expressions I

59 Appropriateness of social responses I

61 Imitative social play II

62 Interest in children I

63 Response to approaches of other children I

64 Group play with peers (age <10.0 years) I

65 Friendships (age >10.0 years) I

67 Unusual preoccupations III

68 Circumscribed interests III

69 Repetitive use of objects or interest in parts of
objects

III

70 Compulsions/rituals III

71 Unusual sensory interests (highest score of 69/71) III

77 Hand and finger mannerisms (highest score of 77/78) III

78 Other complex mannerisms or stereotyped body
movements

III

ADI-R, Autism Diagnostic Interview-Revised.
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sample, resulting in an independent estimate of the accur-
acy of SVM on the whole sample. In each one of the
remaining samples, the optimization with respect to the
gamma and cost parameter was achieved by applying a
second LOOCV procedure, in which each of these n − 1
observations in turn was left out of the sample and SVM
models were fitted to the remaining n − 2 observations,
using a grid of combinations of gamma and cost parameter
values. In a similar fashion as described above, accuracy
was determined for every combination of gamma and cost
parameter values on the grid, and the optimal value of
gamma and cost parameter was determined as the one giv-
ing the highest accuracy. Finally, an SVM model was fitted
to the n − 1 observations remaining in the outer loop using
these optimal values. SVM by nature is a method for binary
(two group) classification, so a multiclass (k classes) exten-
sion was used, based on the ‘one-against-one’ approach, in
which k(k − 1)/2 binary classifiers are trained; the appropri-
ate ‘predicted’ class is found by a voting scheme, choosing
the most frequently assigned class by the binary classifiers.
Thus, the class assigned by SVM is the one with the

maximum votes from all one-versus-one (2-group) clas-
sifications, based on the decision values of the 2-group
classifiers. These decision values can also, post hoc, be
used to obtain a predicted probability for each class,
which can be used as outcome parameters to evaluate
the confidence of SVM predictions.
The software used was the libSVM program, imple-

mented through the SVM function in the e1071 library
in R [44].

Results
Identification of behavioral signatures relating to each
genetic disorder
As a starting point, we explored the distribution of autism
symptom profiles in the genetic disorder sample by PCA.
The PCA plot showed that, on average, some genetic dis-
order profiles were overlapping where others were more
clearly separable (Figure 2). This picture indicated that un-
supervised statistical analysis was not sufficiently sensitive
to optimally distinguish genetic disorder-related profiles.
This notion was confirmed following cluster analysis
(k-means clustering) of the ADI-R data in the genetic dis-
order sample, which did not identify any relevant clusters
(data not shown).
To perform a more sophisticated pattern analysis, we

turned to machine learning analysis. We used SVM as a
supervised learning method to investigate genotype-
phenotype relationships between the six genetic disor-
ders and the item scores from the ADI-R algorithm. The
essential difference with the unsupervised PCA or clus-
tering analysis used above is that the SVM approach
incorporates the knowledge of the genotype in the ana-
lysis. The SVM allocations to genetic disorder groups
occurred in two steps. First, the SVM analyzed 2-group,
‘one-against-one’ comparisons. Subsequently, the multi-
class extension was used to select the most appropriate
‘predicted’ genetic disorder class for each subject on the



Figure 2 PCA plot of ADI-R profiles of subjects in the genetic
disorder sample. Colors/numbers denoting genetic disorder
subgroups. 1, 22q11.2 deletion syndrome; 2, Down’s syndrome; 3,
Prader-Willi syndrome; 4, supernumerary marker chromosome 15; 5,
tuberous sclerosis complex; 6, Klinefelter syndrome. ADI-R, Autism
Diagnostic Interview-Revised; PCA, principal component analysis.
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basis of the most frequently assigned class by the binary
classifiers. The binary one-by-one comparisons showed
high accuracies of up to 97% of correct genetic group al-
locations (Table 3). As a result, a total of 63% of cases
was correctly allocated by the multiclass comparison
using the LOOCV method, whereas random prediction
(without prior knowledge of genetic group) would have
resulted in 21% accuracy (Table 4). Interestingly, in all
groups apart from DS, the averages of the post-hoc pre-
dicted probabilities were highest for the corresponding
genetic disorder class, indicating that the SVM algorithm
was able to predict correct disorder classes with a high
degree of confidence (Table 4).
To further evaluate the validity of the prediction model,

we investigated the correlation between the predicted
Table 3 One-by-one SVM comparisons in the genetic
disorder sample

Genotype SVM accuracy (%)

22q11DS Down’s PWS SMC15 TSC XXY

22q11DS NA 0.89 0.91 0.97 0.90 0.82

Down’s 0.89 NA 0.77 0.84 0.82 0.87

PWS 0.91 0.77 NA 0.84 0.86 0.86

SMC15 0.97 0.84 0.84 NA 0.94 0.88

TSC 0.90 0.82 0.86 0.94 NA 0.72

XXY 0.82 0.87 0.86 0.88 0.72 NA

22q11DS, 22q11.2 deletion syndrome; Down’s, Down’s syndrome; NA, not
applicable; PWS, Prader-Willi syndrome; SMC15, supernumerary marker
chromosome 15; SVM, support vector machine; TSC, tuberous sclerosis
complex; XXY, Klinefelter syndrome.
probabilities and the proportion of cases correctly assigned
to each genetic group, based on LOOCV output. This
tests the expectation of the model that higher probabilities
reflect greater confidence in prediction, as shown by in-
creasing ‘correctness’ in classification. We observed a sig-
nificant correlation (P = 0.002) between the predicted
probabilities and the likelihood of correct classification,
which provides support for the robustness of the model
and encouraged us to test the classifier in further samples.
We were interested to identify which behaviors con-

tributed most to the predictions by SVM. Therefore, the
importance (weight) of each of the ADI-R items to the
SVM classifier was extracted. The result of this analysis
showed that four of the top five most influential items
pertained to ASD symptoms that related to the quality
of social interaction (Table 5). By contrast, the five least
influential items were more concerned with aberrant
communication and repetitive behaviors.
It was notable that the predicted probabilities in

SMC15 cases were also relatively high for prediction to
the PWS group. This seemed plausible, as both disorders
are associated with differences in the ‘dosage’ of genes
located in chromosome 15q11-13. By contrast, SMC15
could be clearly discriminated from 22q11DS by SVM,
which corresponded with a lack of overlap in the PCA
between these two groups (Figure 2). Interestingly, SMC15
and 22q11DS are both characterized by low average
intelligence, suggesting that the behavioral differences
are independent of general intellectual ability. To rule out
the influence of IQ on prediction accuracy, we re-analyzed
the data, including IQ as an additional predictor. The
average accuracy of the SVM predictions was essentially
unchanged (63.0% versus 62.5%), indicating that IQ was
not a confounding factor. The poor prediction for the DS
group was due to a frequent misallocation to the PWS
group; 17 of the DS cases were being incorrectly assigned
to the PWS group. Indeed, an overlap between DS and
PWS groups was also apparent in the PCA of the symp-
tom profiles (Figure 2).
We also tested the accuracy of SVM class assignment

among the subset of individuals who scored above the
ADI-R threshold for ASD (n = 123). This resulted in
similar assignment accuracies and predicted probabilities
(data not shown). In subsequent analyses we used the al-
gorithm derived from all patients from our genetic dis-
order samples, irrespective of whether they met formal
criteria for ASD diagnosis, since from a clinical perspec-
tive, we also wanted to include the profiles of subjects
who scored below ADI-R thresholds for ASD.

Testing the SVM classification algorithm in idiopathic ASD
Next, we considered whether the genetic disorder algo-
rithm could detect a degree of similarity in patterns of
autistic behavior in a sample of ‘idiopathic’ cases. To test



Table 4 Leave-one-out cross-validation (LOOCV) results for the SVM model on ADI-R items for the genetic
disorder sample

Genetic
disorder

SVM frequency of assigned class and predicted probabilities

22q11DS Down’s PWS SMC15 TSC XXY

Total

n Probability n Probability n Probability n Probability n Probability n Probability n

22q11DS 74 0.602 1 0.092 7 0.095 0 0.032 6 0.15 14 0.215 102

Down’s 0 0.027 1 0.166 1 0.103 0 0.097 0 0.03 0 0.047 2

PWS 7 0.099 18 0.485 68 0.537 9 0.301 7 0.12 6 0.167 115

SMC15 0 0.02 0 0.11 4 0.089 10 0.326 0 0.05 2 0.067 16

TSC 2 0.103 0 0.044 3 0.068 0 0.064 30 0.43 9 0.185 44

XXY 7 0.149 1 0.103 5 0.108 3 0.179 7 0.22 20 0.319 43

Total 90 21 88 22 50 51 322

Accuracy 74/90 (82%) 1/21 (10%) 68/88 (77%) 10/22 (45%) 30/50 (60%) 20/51 (39%) 203/322 (63%)

22q11DS, 22q11.2 deletion syndrome; ADI-R, Autism Diagnostic Interview-Revised; Down’s, Down’s syndrome; LOOCV, leave-one-out cross-validation; PWS,
Prader-Willi syndrome; SMC15, supernumerary marker chromosome 15; SVM, support vector machine; TSC, tuberous sclerosis complex; XXY, Klinefelter syndrome.
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this hypothesis, we applied the algorithm to ADI-R data
obtained from the AGRE dataset in order. It should be
noted that the AGRE sample functioned as a ‘blind’ sam-
ple in this context, as we could not validate the outcome
with genetic labels. Therefore, we performed analyses to
indicate if the algorithm would detect meaningful associ-
ations or if these would not differ from random associa-
tions, for example not informed by genetic disorder
labels. Thus, we generated randomly permuted ADI-R
item data from the AGRE0 dataset and compared the
distribution of predicted probabilities in the real (AGRE0
and genetic disorder sample) compared to the randomly
generated data. The probabilities differed significantly
between these groups. As expected, the highest pre-
dicted probabilities were observed among the genetic
disorder cases. Indeed, the lowest probabilities were ob-
served in the randomly generated AGRE subsample.
There was also a significant difference between the gen-
etic groups and AGRE0 (P = 0.0024), between the gen-
etic groups and random data (P <0.001) and between
AGRE0 and random data (Figure 3). Most importantly,
Table 5 ADI-R items that contributed most and least to the re

Lowest five ADI-R items

Item number Item description

70 Compulsions/rituals

38 Neologisms/idiosyncratic language

58 Inappropriate facial expressions

39 Verbal rituals

37 Pronominal reversal

ADI-R, Autism Diagnostic Interview-Revised; SVM, support vector machine.
the probabilities in AGRE0 were significantly higher
than those in the randomly configured data (P <0.001).
This indicated that the algorithm derived from the gen-
etic disorders detected non-random pattern information.
Subsequently, we applied the genetic disorder classifier

to the AGRE0 sample to analyze the distribution of gen-
etic disorder allocations in the blind AGRE subsamples.
The genetic disorder algorithm assigned the highest
probabilities and most cases to the TSC group and the
lowest probabilities and fewest cases to the DS and PWS
groups. We observed a similar distribution of SVM pre-
dicted probabilities in the AGRE1 and AGRE2 samples,
essentially replicating the result obtained for AGRE0.
Again, TSC was by far the most commonly assigned
class, whereas DS and PWS were the least frequently
assigned classes. The predicted probabilities and group
predictions for AGRE0, AGRE1 and AGRE2 are summa-
rized in Table 6. It should be noted that these predic-
tions were achieved by forcing all individuals into one of
the six categories, which means that frequent allocation
should be interpreted as indicative of relative phenotype
sult of the SVM analysis on the genetic syndrome sample

Top five ADI-R items

Item number Item description

63 Response to approaches of other children

49 Imaginative play with peers

64, 65 Group play with peers/friendships

56 Quality of social overtures

68 Circumscribed interests
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similarity. As such, the application of the genetic dis-
order classifier to AGRE samples seemed to indicate en-
hanced relative similarity of AGRE profiles to the TSC
group. To support this notion, we plotted the AGRE0
ADI-R profiles in the PCA plot of the genetic disorder
sample, which confirmed that, on average, the TSC group
displayed most similarity to AGRE0 (Figure 4). In addition,
22q11DS, SMC15 and XXY groups also displayed some
closeness to AGRE0, which seems also reflected in their
occasional allocation by the genetic disorder classifier.
We contrasted these predictions in the AGRE sample

with random predictions; we generated SVM models by
randomly permuting the six labels relating to the genetic
disorders. Thus, random genetic labels were linked to
the existing symptom profiles, thereby destroying the
original relationship between ADI-R score profiles and
the genetic groups. By analyzing the allocations arising
from these random classifier algorithms, we could check
which distribution of allocation would arise by chance,
that is not informed by existing genetic disorder profiles.
We repeated this exercise 1,000 times in order to gain ro-
bust results. The results showed that most were assigned
to the 22q11DS and PWS groups. This result was most
likely due to the fact that these disorders were the two lar-
gest groups in the genetic disorder sample. It should be
noted that this result was strikingly different than the allo-
cation in AGRE by the randomly permuted genetic labels.
Together, these analyses on blind AGRE samples indi-

cated that the algorithm of the genetic disorder sample
could detect an extent of relative similarity in ADI-R
profile patterns among idiopathic subjects.
Figure 3 SVM predicted probabilities of the original genetic
groups, AGRE0 singleton dataset and randomly generated
scores for the AGRE0 singleton dataset. Mean SVM probabilities
differed significantly between the genetic groups and AGRE0
(P = 0.0024), between the genetic groups and random data
(P <0.001) and between AGRE0 and random data (P <0.001). SVM,
support vector machine.
Behavioral signatures in sibling pairs with idiopathic ASD
To test our expectation that the signature patterns derived
from the genetic disorders relate to genotype-phenotype
associations, we hypothesized that the affected sib (sibling)
would be significantly more often assigned to the same
genetic disorder class and be relatively more similar in
their behavioral profile than non-related subjects. To test
this, we examined the concurrence in class assignment (X-
square) and correlation between affected sib pairs in the
SVM assigned class and predicted probabilities.
Significant dependence between the class assignment of

siblings in AGRE1 and the other sibling in AGRE2 was in-
dicated (X-squared = 43, df = 25, P = 0.015). Furthermore,
the predicted probabilities for the assigned class in AGRE1
(sib1) were significantly correlated with the predicted prob-
abilities of their affected sibling AGRE2 (sib2) (Pearson’s
correlation r = 0.20, P <0.001) (Figure 5). To exclude the
possibility that these correlations were driven by severity
rather than specificity of ADI-R profiles, we found that the
severity of the proband symptom scores did not predict the
predicted probability of its sibling, while the predicted
probability scores did predict the probability score of
the sibling (sibling 1 as predictor of sibling 2: mean
items score P = 0.18; probability score P = 1.5e-05; sibling
2 as predictor of sibling 1: mean items score P = 0.86;
probability score P = 7e-05).
Interestingly, the correlation in prediction probabilities

was driven by a correlation (r = 0.35) between sib pairs
assigned to the same class compared with ‘discordant’ sibs
(r = −0.18), that is sibling pairs that had not been assigned
to the same class. In addition, we found that the covari-
ance in probabilities between sibs was greater when both
sibs were assigned to the same genetic disorder class (F-
test for equality of variances of the difference in probabil-
ity, P <0.001). To confirm the notion of enhanced behav-
ioral similarity between siblings allocated to the same
genetic disorder class, we examined the ADI-R scores dir-
ectly. We used the first principle component (PC1) of the
ADI-R scores as a summary measure. Overall (disregard-
ing genetic disorder class), the PC1s of sibs were not sig-
nificantly correlated (r = 0.081, P = 0.089), but when split
out for concordance of genetic disorder prediction, the
correlations were 0.71 and −0.16 for concordant sibs and
discordant sibs, respectively, with P <0.001 for ‘concord-
ant’ versus ‘discordant’ sibs. Overall, the sibling analysis in-
dicated that the familial liability to ASD may be
partitioned according to the relative likelihood of disturb-
ance related to certain genetic disorders.

Discussion
This study demonstrates that patterns of autistic symptom-
atology can be associated with specific genetic disorders.
There has been much speculation that such genotype-
phenotype correlations exist but so far only limited evidence



Table 6 Application of the SVM algorithm derived from the genetic disorder sample to the different AGRE datasets

Genetic
disorder

AGRE0 AGRE1 AGRE2

n % assigned Mean
probability

SD
probability

n % assigned Mean
probability

SD
probability

n % assigned Mean
probability

SD
probability

22q11DS 26 6.9 0.44 0.154 23 5.2 0.44 0.143 28 6.3 0.48 0.189

Down’s 1 0.3 0.25 NA 1 0.2 0.28 NA 1 0.2 0.27 NA

PWS 1 0.3 0.34 NA 5 1.1 0.30 0.131 5 1.1 0.33 0.072

SMC15 24 6.4 0.40 0.086 28 6.3 0.40 0.102 32 7.2 0.41 0.093

TSC 255 68 0.61 0.139 302 68.2 0.62 0.134 283 63.9 0.60 0.140

XXY 68 18.1 0.41 0.092 84 19 0.41 0.071 94 21.2 0.42 0.095

Total 375 100 443 100 443 100

% assigned, percentage assigned to the respective genetic disorder class; 22q11DS, 22q11.2 deletion syndrome; AGRE, Autism Genetics Resource Exchange;
Down’s, Down’s syndrome; mean probability, average predicted probability; n, number of assigned cases to the respective genetic disorder class; NA, not
applicable; PWS, Prader-Willi syndrome; SD probability, standard deviation of predicted probability; SMC15, supernumerary marker chromosome 15; SVM, support
vector machine; TSC, tuberous sclerosis complex; XXY, Klinefelter syndrome.

Bruining et al. Molecular Autism 2014, 5:11 Page 9 of 12
http://www.molecularautism.com/content/5/1/11
to support the conjecture. Our results are consistent with
findings from animal research and suggest that different
pathophysiological pathways underlie certain behavioral
deficits [4,45].
The current study is the first to test the specificity of

genetic behavioral phenotypes using a machine learning
paradigm. The ADI-R algorithm items comprised a com-
paratively small number of symptom features, yet we
used this small set of items to classify our cases. The
total number of correct allocations (63%) was substantial
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raising the possibility that particular styles of social im-
pairment may be related to particular genetic risk factors.
Although differences in the typology of social impairments
have been noted in ASD [46], differences in the types of
social impairment have not been studied in detail and are
only partially captured by the ADI-R items. For instance,
social avoidance is commonly reported in fragile X syn-
drome, as another example of social behavioral specificity
within a genetic disorder associated with ASD [47,48]. It
seems likely that with the incorporation of more symp-
toms and other phenotypic features, such as the presence
of comorbid behavioral problems like those associated
with ADHD [49], the ability to assign cases to specific
classes of genetic disorder may be improved. The inclu-
sion of other conditions such as fragile X syndrome may
also help further map the patterns of genotype-phenotype
correlations. Together, these extensions may reveal further
contrasts or overlaps between genetic disorders that are
biologically meaningful. For instance, it was already inter-
esting that the prediction probabilities for SMC15 were
similar to those for PWS. Both disorders are associated
with abnormalities in the dosage of genes located in the
15q11-13 region and likely lead to perturbations in similar
pathophysiological pathways.
The subjects of this study were included because they

were ascertained for the presence of a genetic disorder
and were assessed regardless of the presence or absence
of behavioral concerns. Although this approach is likely
to have minimized ascertainment biases, some bias can-
not be ruled out. However, any enrichment of behavioral
abnormalities in these cohorts is unlikely to give rise to
the specific patterns of associations identified here. It
was reassuring in this respect that the algorithm derived
from all cases in the genetic disorder samples gave com-
parable results to the analyses that included only the
subjects who scored above the ADI-R threshold for
ASD. Analysis confirmed that IQ did not seem to act as
a confounding factor in the SVM predictions. Also, the
influence of age and medication as cofounds could be
ruled out, as the ADI-R algorithm codes behaviors be-
tween 4 and 5 years old [35].
The application of the genetic disorder algorithm to

AGRE samples indicated that the behavioral patterns ob-
served in cases of idiopathic autism were not random.
Therefore, these results could be used to estimate rela-
tive similarity to behavioral profiles designated from
the genetic disorders. In addition, the sibling analysis
showed correlation of SVM predictions between affected
sib pairs. These findings indicate the feasibility to parti-
tion familiality into components according to patterns of
autistic symptomatology, for example concordance in
relative similarity to behavioral profiles related to the
genetic disorders. This notion should be followed up by
studies that incorporate genetic or pathway information
to ascertain the behavior-based stratification in idio-
pathic samples. For instance, our allocation in idiopathic
ASD to TSC-derived patterns may be supported by mo-
lecular data showing mammalian target of rapamycin
(mTOR) pathway deregulation. Such a result would sup-
port the view that perturbation of the mTOR signaling
cascade is a common pathophysiological feature of hu-
man neurological disorders, including mental retardation
syndromes and ASDs [49]. If confirmed, such results
could complement future gene searches, since stratifica-
tion on the basis of behavioral profile may significantly
increase the power to detect which (combination of )
genetic disorder related pathways are most prominently
involved. Indeed, the notion that pathophysiological pro-
cesses are shared in syndromic and idiopathic cases of
ASD is supported by a recent study that showed conver-
ging synaptic pathophysiology between syndromic (for
example as a cause of a defined genetic disorder) and
non-syndromic rodent models of autism [50]. Moreover,
genotype stratification may also have important treat-
ment implications, as other animal studies suggest that
the best treatment approaches for some genetic disor-
ders (for example fragile X syndrome) may be unsuitable
for others (for example tuberous sclerosis) [49].

Conclusion
Our proof of concept study indicates the existence of
‘signature’ autistic behavioral profiles that index under-
lying genetic risk processes. These signatures may be
helpful in disentangling the etiological and phenotypic
heterogeneity evident in ASD, but warrant replication in
larger and independent samples. The approach pre-
sented in this study could hold promise as a means of
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stratifying patients who may benefit from treatments tar-
geted at specific pathways and as a way of identifying
those patients in whom interventions may have un-
wanted effects.
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