Skip to main content
Fig. 3 | Molecular Autism

Fig. 3

From: De novo missense variants disrupting protein–protein interactions affect risk for autism through gene co-expression and protein networks in neuronal cell types

Fig. 3

A disrupted ASD network identifies novel ASD-associated proteins and protein interactions. a Construction of disrupted and non-disrupted networks. b The disrupted network is enriched for previously implicated ASD proteins. Enrichment was assessed at four levels (from left to right): all proteins, proteins with a network degree higher than the first, the second, and the third quartile of corresponding network degree distributions. c Prioritizing disrupted hubs based on their degrees and connections to previously implicated ASD proteins. A network view of the 34 fourth-quartile hubs in the disrupted network is shown on the left (only hub genes are labeled). Numbers shown in the parenthesis indicate network degrees of hubs in the disrupted ASD network. d Prioritized proteins DDX5 and PABPC1 may function in the transport and localized translation of mRNAs encoding ASD proteins. Upper: a sub-network comprising proteins connected to DDX5 and PABPC1 in the disrupted network (red denotes previously implicated ASD protein). Lower: a schematic diagram illustrating the proposed roles of DDX5, PABPC1, and their interactors. RNP, ribonucleoprotein

Back to article page