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Sex‑specific and sex‑independent 
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Abstract 

Background  Prenatal exposure to maternal metabolic conditions associated with inflammation and steroid dysregu-
lation has previously been linked to increased autism risk. Steroid-related maternal serum biomarkers have also pro-
vided insight into the in utero steroid environment for offspring who develop autism.

Objective  This study examines the link between autism among offspring and early second trimester maternal 
steroid-related serum biomarkers from pregnancies enriched for prenatal metabolic syndrome (PNMS) exposure.

Study design  Early second trimester maternal steroid-related serum biomarkers (i.e., estradiol, free testosterone, total 
testosterone, and sex hormone binding globulin) were compared between pregnancies corresponding to offspring 
with (N = 68) and without (N = 68) autism. Multiple logistic regression analyses were stratified by sex and gestational 
duration. One-way ANCOVA with post hoc tests was performed for groups defined by autism status and PNMS 
exposure.

Results  Increased estradiol was significantly associated with autism only in males (AOR = 1.13 per 100 pg/ml, 95% CI 
1.01–1.27, p = 0.036) and only term pregnancies (AOR = 1.17 per 100 pg/ml, 95% CI 1.04–1.32, p = 0.010). Autism status 
was significantly associated with decreased sex hormone binding globulin (AOR = 0.65 per 50 nmol/L, 95% CI 0.55–
0.78, p < 0.001) overall and when stratified by sex and term pregnancy status. The inverse association between sex 
hormone binding globulin and autism was independent of PNMS exposure.

Limitations  The relative racial and ethnic homogeneity of Utah’s population limits the generalizability of study 
results. Although significant differences by autism status were identified in concentrations of sex hormone binding 
globulin overall and of estradiol in participant subgroups, differences by PNMS exposure failed to reach statistical 
significance, which may reflect insufficient statistical power.
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Conclusion  Both elevated maternal serum estradiol in males only and low maternal serum sex hormone binding 
globulin in both sexes are associated with increased autism risk. Further investigation is merited to identify how ster-
oid, metabolic, and inflammatory processes can interact to influence neurodevelopment in early second trimester.

Keywords  Steroids, Sex hormone binding globulin, Estradiol, Metabolic syndrome, Developmental disability, Prenatal 
risk factors, Pregnancy

Background
Autism is a neurodevelopmental condition affecting 
approximately 2% of the population [1]. Autism is char-
acterized by difficulties with social functioning, repetitive 
behaviors, restricted interests, insistence on sameness, 
and atypical sensory response [2]. Several pre-/perina-
tal autism risk factors associated with metabolic/steroid 
dysregulation and inflammation have been identified. 
Among these, maternal conditions are pre-existing/
gestational diabetes and hypertension/pre-eclampsia 
(collectively hereafter referred to as prenatal metabolic 
syndrome, PNMS), increased pre-pregnancy body mass 
index (BMI), elevated LDL cholesterol, and gestational 
weight gain [3–12].

Changes in maternal metabolism and immune 
responses foster the health and growth of the fetus [13, 
14]. Maternal hyperinsulinemia promotes transfer of 
nutritional resources to the fetus via the placenta [15, 16]. 
Maternal hypercortisolemia influences fetal response to 
stress via hypothalamic–pituitary–adrenal (HPA) pro-
gramming and contributes to the immune privileged 
state in utero [14, 17]. The most vulnerable gestational 
period for disruptions within the maternofetoplacental 
unit to influence autism risk has yet to be determined, 
though some studies found an association between 
increased mid-gestation maternal stress and autism risk 
[18, 19]. The fetal HPA axis matures during this inter-
val, and its programming can be influenced by maternal 
metabolic conditions and in utero stress [20–23]. Prior 
biomarker studies indicate greater autism risk associated 
with steroid dysregulation and inflammation during this 
gestational window [24–30].

In a pilot study with autistic and comparison groups 
enriched for PNMS exposure, Bilder et  al [30] found 
higher estradiol and lower dihydroepiandrosterone 
(DHEA) levels in early second trimester maternal serum 
from term pregnancies associated with the presence of 
autism among offspring [30]. In a study of males with 
autism without consideration of PNMS exposure, Baron-
Cohen et  al [31] also identified higher estrogen levels 
(along with increased progesterone) in second trimester 
amniotic fluid [31]. Bilder et  al [30] and Baron-Cohen 
et al [31] both interpreted their respective estrogen find-
ings as suggestive of increased fetal steroidogenic activ-
ity in autism’s prenatal etiologic pathway. Additionally, 

Bilder et al [30] found lower sex hormone binding globu-
lin (SHBG) levels in pregnancies associated with autism. 
As SHBG inactivates estradiol through binding [32], 
Bilder et al [30] proposed that this finding could potenti-
ate the impact of high estradiol levels. Increased placen-
tal estradiol activity accelerates fetal HPA axis maturation 
during this gestational window [33], which may be rel-
evant to autism pathogenesis. Maternal serum SHBG 
levels are also closely linked to PNMS as a predictor of 
gestational diabetes and pre-eclampsia [34–42]. How 
these prenatal autism biomarkers are influenced by fetal 
sex and pregnancy duration, both well-recognized autism 
risk factors, has yet to be investigated.

The current study extends the investigation of autism 
likelihood associated with early second trimester sex 
steroid-related serum biomarkers by enlarging autistic 
and non-affected offspring groups and including preterm 
pregnancies [30]. Both groups are enriched and matched 
for PNMS exposure. Study aims are to (1) evaluate autism 
risk associated with maternal serum SHBG and sex ster-
oid hormone levels and (2) determine whether this rela-
tionship differs by fetal sex and term/preterm status.

Methods
Approval for this study was obtained from the Utah Reg-
istry of Autism and Developmental Disabilities (URADD) 
Oversight Committee, the Utah State Office of Education, 
and Institutional Review Boards of the University of Utah 
(UU), Intermountain Healthcare (IM), Utah Department 
of Health and Human Services (UDHHS), and Resource 
for Genetic and Epidemiologic Research Review Com-
mittee. The latter is an oversight body that regulates Utah 
Population Database (UPDB) access. UPDB is a robust, 
comprehensive medical research resource that accesses 
many sets of high-quality, population-based, individual-
level records [43].

FASTER parent study
The First and Second Trimester Evaluation of Risk Study 
(FASTER) was an obstetrical study that ascertained 
over 12,000 women with singleton pregnancies liv-
ing along Utah’s Wasatch Front from 1999 to 2002 [44]. 
Supplementary consent was obtained from 10,849 Utah 
FASTER participants for their residual serum samples to 
be used in additional research studies. These participants’ 
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index offspring were identified through birth record link-
age within the UPDB. This resulted in 3327 male and 
3114 female offspring whose births coincided with their 
mothers’ FASTER participation.

Autism status
In 2016, multiple data sources were linked within the 
UPDB to investigate autism birth risk factors. URADD 
was the primary source for autism status. URADD is 
administered through the UU Department of Psychiatry 
Huntsman Mental Health Institute with oversight from 
UDHHS and in cooperation with the Utah State Board 
of Education. URADD classifies the presence of autism 
using autism diagnostic billing codes and special educa-
tion autism exceptionality status [45, 46]. Two FASTER 
birth years (2000, 2002) overlapped with URADD activi-
ties enhanced through Utah’s participation in the Centers 
for Disease Control and Prevention’s Autism and Devel-
opmental Disabilities Monitoring Network. This network 
uses record review methodology that has been validated 
in Utah [45, 47, 48]. Autism status was identified through 
diagnostic billing codes from UU and IM Enterprise Data 
Warehouses and statewide hospital discharge summaries. 
Among FASTER offspring linked to birth records, 168 
were identified with autism.

Prenatal metabolic syndrome (PNMS) exposure 
and covariates
Birth risk factors were obtained from birth records. 
PNMS exposure was defined as the presence of gesta-
tional hypertension, gestational diabetes, pre-/eclampsia, 
pre-existing diabetes (type 1 and 2), and/or pre-existing 
hypertension [30]. The prevalence of PNMS exposure 
among FASTER offspring approximated that of epidemi-
ologic studies for these conditions [49, 50]. Pre-/perina-
tal characteristics previously associated with autism and/
or PNMS were identified including child’s sex, parental 
ages, parental education, pre-pregnancy body mass index 
(BMI), pregnancy weight gain, birthweight, and gesta-
tional age. Term pregnancy was defined as ≥ 37  weeks 
gestation.

Prenatal maternal serum
Maternal blood samples were collected at 15–186 weeks 
gestation, between 1999 and 2002. Blood samples were 
centrifuged within 30  min, stored at 4  °C, and shipped 
overnight to a central laboratory for initial FASTER 
serum studies. Residual serum samples were frozen 
at − 80  °C. In 2017 and 2019, the first and second batch 
of samples, respectively, were shipped overnight on dry 
ice, stored at − 80  °C, thawed on wet ice, and aliquoted 
into pre-cooled tubes. In total, 2 thaw/refreeze cycles 
occurred prior to serum analyses.

Sample selection
Steroid dysregulation occurs more frequently in preg-
nancies complicated by PNMS. Both autistic (44%) and 
comparison (47%) groups were enriched for PNMS expo-
sure to examine sex steroid-related biomarkers across a 
stepwise change from the absence to presence of autism 
and PNMS: autism-/PNMS-, autism-/PNMS+ , autism+/
PNMS- and autism+/PNMS+ . For the autism- group, 44 
PNMS+ offspring were randomly selected and matched 
by sex and birth year to 44 PNMS- offspring. For the 
autism+ group, 31 PNMS + offspring (total identified) 
was matched to 45 PNMS- offspring by child’s sex and 
birth year. Corresponding early second trimester serum 
samples (N = 136) were located with the following group 
distributions: 36 autism-/PNMS-, 32 autism-/PNMS+ , 
38 autism+ /PNMS-, and 30 autism+ /PNMS+ .

Serum analysis
SHBG, estradiol, free testosterone, and total testoster-
one biomarker assays were performed in 96 well plates; 
plate loading occurred through an automated liquid han-
dling system (Gilson Pipetmax). Commercially available 
ELISA kits were used per the manufacturer’s instruc-
tions, except where noted. Abcam (Boston, MA) ELISA 
kits measured estradiol, total testosterone, free testos-
terone; RayBiotech (Norcross, GA) ELISA kits meas-
ured SHBG. Estradiol required a 1:2 dilution in assay 
buffer to ensure samples fell within the dynamic range of 
the standard curve. Samples were tested in two batches 
with data from term offspring in the first batch reported 
in the pilot study [30]. Both term and preterm autism+ /
PNMS+ samples (n = 30) were tested in the first batch 
along with term samples for autism-/PNMS- (n = 11), 
autism-/PNMS+ (n = 8), and autism+ /PNMS- (n = 28) 
samples. The samples in the second batch corresponded 
to both term and preterm pregnancies with the follow-
ing autism and exposure status distribution: autism-/
PNMS- (n = 25), autism-/PNMS+ (n = 24), and autism+ /
PNMS- (n = 10).

Statistical analysis
The distributions of biomarkers were examined for 
extreme outliers; one extreme total testosterone (7.47 pg/
ml) and one free testosterone value (10.11  ng/ml) were 
observed and deleted. Distributions subsequently satis-
fied normality assumptions. Binary logistic regression 
models were fit to measure the association between 
autism and biomarkers. Two principal component fac-
tors (PCF) were extracted for the following sets of highly 
correlated covariates: gestational age and birthweight 
(PCF 1) and parental ages and education durations (PCF 
2). Crude (unadjusted) models were initially formulated, 
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and an adjusted model was fit by incorporating PCAs 
and additional covariates (i.e., sex, weight gain, and BMI). 
Two subsequent model sets were formulated stratifying 
by term/preterm status (PCF 1 was replaced with birth-
weight) and sex (sex was removed as a covariate).

For biomarkers which demonstrated significant asso-
ciations with autism in the overall crude and adjusted 
models, one-way ANOVA and ANCOVA models were 
formulated to quantify the association between bio-
marker concentrations and a four-level measure of 
autism/PNMS exposure (i.e., autism-/PNMS-, autism-/
PNMS+ , autism+/PNMS-, and autism+/PNMS+). 
The one-way ANOVA was initially formulated, and the 
ANCOVA model was subsequently fitted by incorporat-
ing PCF 1, PCF 2, and covariates above. Post hoc tests to 
control for multiple comparisons used the Sidak method 
[51].

Post hoc analyses using Pearson’s correlation and crude 
and adjusted linear regression, overall and stratified by 
autism status, were conducted to evaluate associations 
between SHBG and BMI. Because of the established 
inverse relationship between SHBG and obesity outside 
of pregnancy, these analyses explored how BMI may 
influence the relationship between autism risk and SHBG 
concentrations during pregnancy [42, 52, 53]. Covari-
ates included in the adjusted model were sex, weight 
gain, PCF 1, and PCF 2. A sensitivity analysis was subse-
quently performed that included as an additional covari-
ate a principal component factor (PCF 3) extracted for 
the highly correlated sex hormone levels estradiol, total 
testosterone, and free testosterone.

Analyses were conducted in SPSS v.28 and R (R Core 
Team 2021) with figures produced using ggplot2 [54]. An 
alpha of 0.05 was selected to assess statistical significance.

Results
Offspring characteristics
Serum analyses were conducted on 136 offspring with 
and without autism (n = 68, 73.5% male, 44.1% with 
PNMS exposure, 82.4% term; n = 68, 47.1% male, 47.1% 
with PNMS exposure, 60.3% term, respectively). See 
Table 1.

SHBG and ASD risk
In crude and adjusted logistic regression analyses, autism 
status was significantly associated with decreased SHBG 
levels (OR = 0.66 per 50  nmol/L, 95% CI 0.56–0.77, 
p < 0.001; AOR = 0.65 per 50  nmol/L, 95% CI 0.55–0.78, 
p < 0.001, respectively). Similar results occurred when 
stratified by sex and gestational duration (see Table 2).

Estradiol, free testosterone, total testosterone, and ASD 
risk
In the crude logistic regression analysis, autism was 
significantly associated with increased estradiol levels 
(OR = 1.09 per 100  pg/ml, 95% CI 1.01–1.17, p = 0.02); 
this relationship did not reach significance in the adjusted 
model (AOR = 1.08 per 100  pg/ml, 95% CI 1.00–1.17, 
p = 0.07). When stratified by gestational duration, crude 
and adjusted models for term pregnancies (but not pre-
term) demonstrated significant associations between 
estradiol levels and autism (OR = 1.14 per 100  pg/ml, 

Table 1  Participant characteristics

a The specific number for cell counts of 10 or less is suppressed per Utah Population Database protocol
b In subsequent stratified analyses, the preterm cohort was born before 37 weeks gestation, and the term cohort was born 37 + weeks gestation

Characteristics Autistic group (n = 68) Comparison group (n = 68)

N % N %

Male 50 73.5 32 47.1

PNMS Exposure 30 44.1 32 47.1

      Diabetes 14 20.6  < 11a  < 16.2a

      Hypertension 22 32.4 23 33.8

Mean (SD) Range Mean (SD) Range

Maternal age (y) 29.1 (6.1) 19 to 45 28.4 (5.3) 16–43

Maternal education (y) 14.0 (1.9) 9 to 17 14.1 (2.3) 6–17

Paternal age (y) 31.0 (7.6) 20 to 52 29.9 (5.3) 19–43

Paternal education (y) 13.9 (1.9) 10 to 17 14.2 (2.2) 9–17

Gestational ageb (wk) 37.9 (2.6) 25 to 42 36.5 (2.3) 27–41

Birth weight (g) 3186 (712) 910 to 4590 2900 (641) 690–4082

Pre-pregnancy BMI 26.4 (6.8) 18.2 to 55.1 25.2 (4.1) 16.9–41.2

Pregnancy weight gain (lbs) 30.7 (14.3) (− 3) to 62 28.3 (11.6) 4–60
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95% CI 1.03–1.26, p = 0.01; AOR = 1.17 per 100  pg/ml, 
95% CI 1.04–1.32, p = 0.01, respectively). When strati-
fied by sex, the association between estradiol and autism 
was only significant in males after adjusting for covariates 
(AOR = 1.13 per 100  pg/ml, 95% CI 1.01–1.27, p = 0.04) 
(See Table  3). All analyses for free and total testoster-
one found no significant associations with autism (See 
Tables 4 and 5).

Effects of PNMS exposure on ASD risk associated 
with SHBG
Table  6 provides a description of offspring charac-
teristics stratified into four groups based on autism 
and PNMS exposure that were used in the ANOVA 
and ANCOVA models. Both ANOVA and ANCOVA 
models yielded significant overall effects for autism/
PNMS exposure on mean SHBG levels (F(3135) = 20.0 
p < 0.001, F(8131) = 10.4 p < 0.001; (F(3131) = 12.3, 

p < 0.001). Figure  1 depicts the results of the post hoc 
tests which indicated that statistically significant dif-
ferences remained in the least square means of SHBG 
concentrations between autism+/PNMS+ and autism-/
PNMS- groups (mean difference = −  263.00, 95% 
CI = − 395.83 − − 130.18, p < 0.001), autism+/PNMS+ and 
autism-/PNMS+ groups (mean difference = −  217.37, 
95% CI = − 347.63 − − 87.10, p < 0.001), autism+/PNMS- 
and autism-/PNMS- groups (mean difference = − 183.36, 
95% CI = −  300.64 − −  66.08, p < 0.001), and autism+/
PNMS- and autism-/PNMS+groups (mean differ-
ence = − 137.72, 95% CI = − 260.77 − − 14.67, p = 0.02).

Association between SHBG and BMI
In post hoc analyses, BMI demonstrated a statistically 
significant inverse relationship with SHBG levels in crude 
and adjusted models for the overall cohort (β = − 10.35, 
p = 0.002; β = − 12.02, p < 0.001, respectively) and among 

Table 2  Association between maternal serum sex hormone binding globulin levels and odds of offspring developing autism

a OR and AOR are calculated for every 50 nmol/L increase in sex hormone binding globulin
b Adjusted for Principal Component Factor 1 (gestational age, birthweight), Principal Component Factor 2 (maternal age, paternal age, maternal education duration, 
paternal education duration), pre-pregnancy body mass index (BMI), gestational weight gain, newborn sex. When stratified by sex, sex was removed as a covariate. 
When stratified by gestational age category, principal component factor 1 was replaced with birthweight
c Preterm < 37 weeks gestation; term ≥ 37 weeks gestation

Cohort Mean Range SD Crude modelsa Adjusted modelsa,b

OR 95% CI P Value AOR 95% CI P Value

Overall (N = 136) 316.42 57.05–1110.11 223.16 0.66 0.56–0.77  < 0.001 0.65 0.55–0.78  < 0.001

By sex

Males (n = 82) 289.54 66.42–1110.11 204.93 0.69 0.58–0.83  < 0.001 0.7 0.57–0.85  < 0.001

Females (n = 54) 357.23 57.05–1030.56 244.65 0.54 0.37–0.79 0.001 0.58 0.35–0.95 0.031

By gestational age categoryc

Term (n = 97) 274.95 57.05–1110.11 224.62 0.67 0.55–0.82  < 0.001 0.67 0.53–0.85  < 0.001

Preterm (n = 39) 419.56 77.69–813.79 184.81 0.63 0.45–0.86 0.004 0.5 0.30–0.85 0.01

Table 3  Association between maternal serum estradiol levels and odds of offspring developing autism

a OR and AOR are calculated for every 100 pg/ml increase in estradiol
b Adjusted for Principal Component Factor 1 (gestational age, birthweight), Principal Component Factor 2 (maternal age, paternal age, maternal education duration, 
paternal education duration), pre-pregnancy body mass index (BMI), gestational weight gain, newborn sex. When stratified by sex, sex was removed as a covariate. 
When stratified by gestational age category, principal component factor 1 was replaced with birthweight
c Preterm < 37 weeks gestation; term ≥ 37 weeks gestation

Cohort Mean Range SD Crude modelsa Adjusted modelsa,b

OR 95% CI P Value AOR 95% CI P Value

Overall (N = 135) 1096.01 192.50–2524.54 500.66 1.09 1.01–1.17 0.023 1.08 1.00–1.17 0.065

By Sex

Males (n = 81) 1143.94 330.83–2285.98 478.24 1.09 0.99–1.21 0.083 1.13 1.01–1.27 0.036

Females (n = 54) 1024.11 192.50–2524.54 528.9 1.06 0.95–1.18 0.294 0.94 0.79–1.11 0.438

By gestational age categoryc

Term (n = 96) 1153.46 330.83–2285.98 444.61 1.14 1.03–1.26 0.011 1.17 1.04–1.32 0.01

Preterm (n = 39) 954.59 192.50–2524.54 600.7 0.99 0.89–1.11 0.82 0.97 0.85–1.11 0.687
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those without autism (β = − 22.45, p < 0.001; β = − 24.22, 
p < 0.001, respectively). However, no associations were 
found between maternal serum SHBG levels and BMI 
for offspring with autism in crude or adjusted models 
(β = −  2.92, p = 0.28; β = −  4.29, p = 0.14, respectively). 
The lack of association between SHBG levels and BMI in 
the autism group was particularly notable in the presence 
of PNMS exposure. The sensitivity analysis adding PCF 3 
to the adjusted models resulted in comparable findings. 
See Fig. 2 and Table 7.

Discussion
Likelihood of autism among offspring was associated 
with low SHBG and increased estradiol levels in early 
second trimester maternal serum. SHBG levels dem-
onstrated a significant inverse association with the 
presence of autism among offspring overall and across 
gestational age and sex categories. SHBG production 

occurs in the liver and is influenced by insulin sensi-
tivity and body fat composition during pregnancy [36, 
52, 55]. Although SHBG’s main function is to bind sex 
steroids to reduce free sex hormone levels, SHBG has 
also been found to link inversely to insulin resistance 
independent of sex hormone levels [56]. Wallace et  al 
[56] provide a review of observational and genetic stud-
ies that describe the relationship between low SHBG 
levels and type 2 diabetes mellitus and support insulin 
resistance as a mechanistic link underlying this asso-
ciation. SHBG has previously been used as a proxy for 
gestational insulin sensitivity [41] as estradiol and tes-
tosterone play a limited role in SHBG regulation dur-
ing pregnancy [35]. Current study findings support 
this prior work as the relationship between SHBG and 
autism likelihood was unchanged following adjust-
ment for sex hormone levels. Prenatal maternal serum 
SHBG levels have previously been found to correlate 

Table 4  Association between total testosterone and odds of offspring developing autism

a OR and AOR are calculated for every 1 ng/ml increase in total testosterone
b Adjusted for Principal Component Factor 1 (gestational age, birthweight), Principal Component Factor 2 (maternal age, paternal age, maternal education duration, 
paternal education duration), pre-pregnancy body mass index (BMI), gestational weight gain, newborn sex. When stratified by sex, sex was removed as a covariate. 
When stratified by gestational age category, principal component factor 1 was replaced with birthweight
c Preterm < 37 weeks gestation; term ≥ 37 weeks gestation

Cohort Mean Range SD Crude modelsa Adjusted modelsa,b

OR 95% CI P Value AOR 95% CI P Value

Overall (N = 135) 0.9 0.22–3.50 0.47 0.79 0.38–1.64 0.52 1.01 0.41–2.50 0.979

By sex

Males (n = 81) 0.9 0.34–3.50 0.5 0.6 0.24–1.51 0.275 1.02 0.35–2.97 0.967

Females (n = 54) 0.89 0.22–2.10 0.42 1.34 0.35–5.10 0.672 0.36 0.05–2.45 0.293

By gestational age categoryc

Term (n = 97) 0.87 0.30–2.31 0.39 1.05 0.38–2.95 0.921 1.21 0.34–4.30 0.768

Preterm (n = 38) 0.96 0.22–3.50 0.62 0.6 0.15–2.35 0.466 0.43 0.10–1.87 0.262

Table 5  Association between free testosterone and odds of offspring developing autism

a OR and AOR are calculated for every 1 pg/ml increase in free testosterone
b Adjusted for Principal Component Factor 1 (gestational age, birthweight), Principal Component Factor 2 (maternal age, paternal age, maternal education duration, 
paternal education duration), pre-pregnancy body mass index (BMI), gestational weight gain, newborn sex. When stratified by sex, sex was removed as a covariate. 
When stratified by gestational age category, principal component factor 1 was replaced with birthweight
c Preterm < 37 weeks gestation; term ≥ 37 weeks gestation

Cohort Mean Range SD Crude modelsa Adjusted modelsa,b

OR 95% CI P Value AOR 95% CI P Value

Overall (N = 134) 1.27 0.00–4.91 0.88 1.01 0.68–1.48 0.98 1.08 0.68–1.71 0.74

By sex

Males (n = 80) 1.31 0.00–4.91 0.95 0.84 0.53–1.36 0.483 1.05 0.62–1.79 0.846

Females (n = 54) 1.20 0.04–3.26 0.76 1.35 0.64–2.84 0.434 0.53 0.18–1.62 0.265

By gestational age categoryc

Term (n = 96) 1.26 0.06–4.02 0.78 0.96 0.57–1.63 0.888 0.96 0.51–1.83 0.906

Preterm (n = 38) 1.27 0.00–4.91 1.1 1.08 0.58–2.03 0.809 1.01 0.49–2.08 0.981
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negatively with fasting plasma glucose, insulin, and 
C-peptide levels [34, 35]. Serum SHBG levels are lower 
in women with gestational diabetes [36] and have dem-
onstrated predictive value for gestational diabetes and 
hypertension [34, 35, 37–42]. Interestingly, the current 
study found lower SHBG levels in the autism cohorts 

with and without PNMS exposure. If lower maternal 
serum SHBG were to reflect insulin resistance, study 
findings suggest that insulin insensitivity could be 
occurring in the early second trimester of pregnancies 
associated with autism even in the absence of subse-
quent clinical PNMS manifestations.

Fig. 1  Sex Hormone Binding Globulin (SHBG) levels by autism and Prenatal Metabolic Syndrome (PNMS) exposure status. ANCOVA included 
covariates sex, BMI, gestational weight gain, principal component factor 1 (birthweight and gestational age) and principal component factor 2 
(parental ages and durations of education), with Sidak correction for multiple comparisons. Values that do not share a letter differ significantly 
from each other.

Table 6  Participant characteristics by autism and prenatal metabolic syndrome exposure (PNMS) classification

a The specific number for cell counts of 10 or less is suppressed per Utah Population Database protocol
b In stratified analyses, the preterm cohort was born before 37 weeks gestation, and the term cohort was born 37 + weeks gestation

Autism-/PNMS- (n = 36) Autism-/PNMS + (n = 32) Autism + /PNMS- (n = 38) Autism + /PNMS + (n = 30)

N % N % N % N %

Male 17 47.2 15 46.9 28 73.7 22 73.3

Diabetes N/A N/A 14 43.8 N/A N/A  < 11a  < 36.6a

Hypertension N/A N/A 22 68.8 N/A N/A 23 76.7

Mean (SD) Range Mean (SD) Range Mean (SD) Range Mean (SD) Range

Maternal age (y) 28.6 (5.5) 16 to 38 28.1 (5.2) 18 to 43 29.0 (6.4) 19 to 42 29.2 (5.8) 21 to 45

Maternal education (y) 13.9 (2.7) 6 to 17 14.4 (1.7) 11 to 17 13.9 (2.1) 9 to 17 14.1 (1.7) 11 to 17

Paternal age (y) 30.2 (5.0) 19 to 40 29.5 (5.7) 20 to 43 32.3 (7.9) 21 to 52 29.3 (7.1) 20 to 52

Paternal education (y) 14.3 (2.5) 9 to 17 14.1 (1.9) 12 to 17 14.0 (2.0) 10 to 17 13.8 (1.8) 10 to 17

Gestational ageb (wk) 36.9 (1.9) 30 to 41 36.2 (2.6) 27 to 40 38.2 (2.9) 25 to 42 37.5 (2.1) 31 to 40

Birth weight (g) 2942 (546) 1550 to 4082 2851 (739) 690 to 4054 3213 (733) 910 to 4443 3153 (696) 1332 to 4590

Pre-pregnancy BMI 24.6 (3.8) 16.9 to 32.8 25.9 (4.4) 18.5 to 41.2 24.9 (6.6) 18.2 to 55.1 28.5 (6.7) 20.0 to 43.6

Pregnancy Weight gain (lbs) 26.6 (10.3) 4 to 50 30.3 (12.8) 8 to 60 28.1 (11.7) 2 to 47 34.2 (16.8) − 3 to 62
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BMI is recognized as a major determinant of SHBG lev-
els and has been inversely associated with SHBG in prior 
obstetrical studies [42, 52, 53]. The connection between 
BMI and SHBG levels has been attributed to higher 
liver fat content because lipogenesis suppresses hepatic 
SHBG synthesis [52, 55, 57]. While the post hoc analy-
sis of SHBG and BMI demonstrated a significant associa-
tion in the overall cohort, this relationship appeared to be 
driven entirely by the unaffected cohort and was absent 
in pregnancies from which offspring developed autism. 
Instead, SHBG levels in the autism group were low across 
the BMI range. Low SHBG levels in the autism group 
regardless of BMI suggest that metabolic processes could 
be occurring during pregnancies associated with autism 
that supersede SHBG synthesis suppression by hepatic 
lipogenesis.

A pilot version of the current study found higher 
maternal serum estradiol levels, in combination with 
lower DHEA and SHBG levels, to be associated with 
increased likelihood of autism among term offspring [30]. 
Collectively, these findings were interpreted as indicat-
ing increased steroidogenic activity by the fetus at risk 

for autism during early second trimester, as DHEA from 
both maternal and fetal adrenal glands acts as a substrate 
for placental estradiol synthesis [58, 59]. Additionally, 
higher placental estradiol activity during this gestational 
window can accelerate fetal HPA axis maturation [33, 
60]. By extending the pilot study with 65 additional par-
ticipants, 39 of whom were born preterm, current find-
ings indicate that the link between increased maternal 
serum estradiol and autism likelihood appears specific to 
male sex and term delivery. In an exclusively male autism 
cohort, Baron-Cohen et  al [31] identified elevated mid-
gestation amniotic fluid estrogen levels and attributed 
this finding to their longstanding theory that autism is 
caused by the impact of increased fetal steroidogenic 
activity on sex-specific brain development. Amniotic 
fluid and maternal serum estradiol levels reflect comple-
mentary components of the maternofetoplacental unit as 
amniotic fluid at this stage in pregnancy is populated by 
fetal urine output, while maternal serum estradiol is pro-
duced primarily by the placenta using fetal and maternal 
substrates [58, 59, 61]. Further study is needed to under-
stand whether the link between higher amniotic fluid 

Fig. 2  Scatterplot between maternal serum sex hormone binding globulin levels and pre-pregnancy body mass index (BMI) by prenatal metabolic 
syndrome exposure and autism among offspring.

Table 7  Association between sex hormone binding globulin and Body Mass Index (BMI) by autism status

a Adjusted for Principal Component Factor 1 (PCF 1: gestational age, birthweight), Principal Component Factor 2 (PCF 2: maternal age, paternal age, maternal 
education duration, paternal education duration), gestational weight gain, newborn sex
b Adjusted for PCF 1, PCF 2, gestational weight gain, newborn sex, and Principal Component Factor 3 (PCF 3: total testosterone, free testosterone, and estradiol levels)

Cohort Crude models Adjusted modelsa Sensitivity Analysesb

β 95% CI P Value β 95% CI P Value β 95% CI P Value

Overall − 10.35 − 16.90–− 3.80 0.002 − 12.02 − 18.38–− 5.66  < 0.001 − 12.02 − 18.41–− 5.62  < 0.001

Autism status

Present − 2.92 − 8.33–2.48 0.284 − 4.29 − 10.01–1.42 0.138 − 4.23 − 9.99–1.53 0.147

Absent − 22.46 − 34.52–− 10.41  < 0.001 − 24.22 − 36.11–− 12.33  < 0.001 − 24.46 − 36.82–− 12.10  < 0.001
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steroid levels, and autism is also limited to male and term 
offspring.

Unlike the current study’s null findings between estra-
diol and autism likelihood in the overall model follow-
ing adjustment for covariates, Windham et al [28] found 
lower levels of another estrogen (i.e., estriol) in mid-
gestation maternal serum significantly linked to autism. 
Study design differences may account for these discrep-
ancies as the Windham et  al [28] study used a diverse, 
population-based sample rather than a small sample 
enriched for PNMS exposure; estradiol and estriol also 
differ significantly in their receptor binding capacity and 
clearance rate within maternal serum. Further inves-
tigation into steroid-related maternal serum biomark-
ers within a large population-based sample is merited 
to understand how the mother, pregnancy, and child’s 
characteristics could influence the relationship between 
maternal mid-gestation serum estrogen levels and 
autism.

The sex-specific association between maternal serum 
estradiol and the likelihood of autism among offspring 
may reflect sex differences in fetal response to prenatal 
adversity that place male newborns at greater risk for 
complications [62–65]. Estradiol has a bimodal effect on 
inflammation with lower levels enhancing T-cell and pro-
inflammatory cytokine responses and higher levels (i.e., 
during pregnancy) reducing these immune responses 
while promoting B-cell antibody production [66]. Sub-
sequently, cell-mediated autoimmune diseases (e.g. 
rheumatoid arthritis) improve during pregnancy while 
autoantibody-mediated conditions worsen (e.g., systemic 
lupus erythematosus). Maternal anti-fetal brain autoanti-
bodies have been implicated in autism, and mouse mod-
els demonstrate that anti-fetal brain antibodies produce 
behavior changes (e.g., increased repetitive behaviors, 
reduced social interest) in males only [67, 68]. If extended 
exposure to high estradiol levels influences inflammatory 
processes, then, affected pregnancies carried to term may 
increase offspring’s susceptibility to subsequent adverse 
effects. Interestingly, Windham et al. also suggested that 
the inverse relationship they identified between mid-ges-
tation maternal serum estrogen levels and autism likeli-
hood could be attributed to hormonal influences on the 
immune system [28].

While outside the context of pregnancy, SHBG has 
also been directly linked to inflammation. SHBG has 
been inversely associated with the inflammatory marker 
C-reactive protein and reduces inflammatory processes 
in  vitro [69, 70]. Introducing SHBG to adipocytes and 
macrophages suppresses the pro-inflammatory response 
induced by lipopolysaccharide [70]. If these properties 
extend to pregnancy, low SHBG levels could herald a pro-
inflammatory state in the maternal compartment that 

could adversely affect fetal development. Prior mater-
nal serum biomarker studies have demonstrated higher 
autism likelihood associated with inflammation during 
the gestational window in which current study samples 
were collected [24–27].

This study harnessed a unique collection of resources 
available in Utah to investigate maternal metabolic con-
ditions and the in utero steroid environment associated 
with ASD. Because serum SHBG levels do not require 
timed sample collection, a proxy for insulin sensitivity 
can be evaluated within banked serum from an obstetri-
cal cohort large enough to examine risk associated with 
a childhood outcome affecting 2% of the population [36, 
41]. Study findings justify investigation into early second 
trimester phenomena that may suppress maternal SHBG 
production and influence fetal neurodevelopment even in 
the absence of subsequent clinical PNMS manifestations.

Limitations
The relative racial and ethnic homogeneity of Utah’s 
population limits the generalizability of study results. 
Although significant differences by autism status were 
identified in concentrations of SHBG overall and of 
estradiol in participant subgroups, differences by PNMS 
exposure failed to reach statistical significance, which 
may reflect insufficient statistical power. To eliminate 
potential batch effects on the comparison between pre-
term and term autism+/PNMS + offspring, all autism+/
PNMS+ offspring were analyzed within the first batch 
which limits the interpretation of results related to 
PNMS exposure between the autism subgroups across 
batches. Compared to steroid hormones, inflammatory 
serum biomarkers are less stable over time and across 
freeze–thaw cycles [71, 72 . The absence of accompanying 
inflammatory biomarkers also limits this study’s ability to 
inform how findings relate to co-occurring inflammatory 
processes. Further work is needed to understand how 
lower SHBG and elevated estradiol levels may coincide 
with in utero processes that could collectively contribute 
to autism’s development.

Conclusion
Study findings suggest that maternal SHBG produc-
tion is suppressed during the early second trimester of 
pregnancies associated with autism among offspring 
independent of fetal sex, gestational duration, BMI, 
sex hormone levels, and subsequent PNMS emer-
gence. Autism likelihood associated with higher mater-
nal estradiol levels appears limited to male offspring 
and term birth. Understanding how prenatal maternal 
SHBG and estradiol levels are linked to autism among 
offspring could facilitate early detection screening 
strategies and foster the development of therapeutic 
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interventions to optimize fetal health during this criti-
cal period of neurodevelopment.
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