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Abstract

The diagnosis of autism spectrum disorder (ASD) during early childhood has a profound effect not only on young
children but on their families. Aside from the physical and behavioural issues that need to be dealt with, there are
significant emotional and financial costs associated with living with someone diagnosed with ASD. Understanding how
autism occurs will assist in preparing families to deal with ASD, if not preventing or lessening its occurrence.

Serotonin plays a vital role in the development of the brain during the prenatal and postnatal periods, yet very little is
known about the serotonergic systems that affect children with ASD. This review seeks to provide an understanding of
the biochemistry and physiological actions of serotonin and its termination of action through the serotonin reuptake
transporter (SERT). Epidemiological studies investigating prenatal conditions that can increase the risk of ASD describe a
number of factors which elevate plasma cortisol levels causing such symptoms during pregnancy such as hypertension,
gestational diabetes and depression. Because cortisol plays an important role in driving dysregulation of serotonergic
signalling through elevating SERT production in the developing brain, it is also necessary to investigate the
physiological functions of cortisol, its action during gestation and metabolic syndromes.
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Review
Definition of autism spectrum disorder
Autism spectrum disorder (ASD) is a neurodevelopmental
disorder presenting in the first 3 years of life that is
strongly correlated with changes in neural growth during
prenatal and post natal periods [1]. A child with ASD pre-
sents with the following: defects in social interaction and
communication [2]; repetitive stereotypic behaviour or
movements [2]; deficits in language acquisition [3], failure
to assume meaning from normal social cues and a fixation
on a maintained uniformity of routine [4]. Furthermore,
this disorder is also associated with sensory abnormalities
with a low threshold to sensory inputs that result in avoid-
ance behaviours [5]. ASD is generally viewed as a male
predominant disorder with a ratio of 4:1 to females [6].
Autism is classified as a pervasive developmental dis-
order and clinicians and researchers use the term ASD
to include autism, Asperger’s syndrome and pervasive
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developmental disorder not otherwise specified (PDD-
NOS) (for review of symptoms see [2]). The primary
symptoms of ASD have previously been defined in the
Diagnostic and Statistical Manual of Mental Disorders,
4th Edition (DSM-1V, American Psychiatric Association)
with some impairments controversially reclassified in
the recently released DSM-V [7].

Over the past 20 years there has been an increase in the
frequency of the disorder with present rates of ASD being
diagnosed at about 2% for children in the USA [8]. A
number of reasons have been advanced for this increase,
including changes in administrative classifications, policy
and practice changes and increased awareness [2]. It is be-
lieved that surveillance and screening strategies for early
identification of ASD could allow early treatment and im-
proved outcomes.

Nevertheless, hereditary and environmental factors
that occur during gestation and postnatal periods lead-
ing to significant aberrations in neural organisation and
cortical network development are the most likely causes
of ASD [9].
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Diagnosis of autism spectrum disorder

It has been difficult to diagnose ASD until the affected
child is 3 years of age, as the clinical signs are not easily
identifiable and language development is delayed [2].
Some families report social deficits (such as facial expres-
sions, non-verbal gestures and reduced interaction) within
the first few months after birth [10]. A retrospective video
study published by Baranek in 1999 [11] observed the
symptoms of ASD in children at 9 to 12 months and has
suggested a number of early intervention procedures that
involve assessment of sensory processing and sensory
motor functions in addition to recording social respon-
siveness during infancy to diagnose ASD. Studies investi-
gating infants at risk (siblings of affected children) have
reported that deficits in communication and social inter-
actions can be identified as early as 6 months of age
[12,13]. These observations indicate that relevant neuro-
chemical events that alter neuroanatomical growth
occur early in the development of the CNS (central ner-
vous system) [14]. Therefore, it is suggested that if we
can understand the combination of events that cause
the development of ASD, then we can identify women
and children at risk and conceivably develop treatments
to reduce symptoms associated with this condition.

Aetiology of ASD

A combination of clinical, neuroimaging, neuropatho-
logical and neurochemical studies of individuals diagnosed
with ASD have reported disorders in the neuronal cortical
organisation causing deficits in information processing in
the nervous system [15]. This includes alterations in
neural synaptic and dendritic organisation that modifies
brain structure, coupled with abnormal patterns of brain
growth during the early years in brain regions involved in
the development of social, communication and motor
abilities [9].

ASD has been shown to be a highly genetic disorder.
Heritability estimates from family and twin studies suggest
that about 90% of variance is attributable to genetic factors
[16], with 60 to 92% of monozygotic twins concordant for
ASD (depending on the symptoms) compared to 10% of
dizygotic twins [17]. The risk of developing ASD has re-
cently been estimated to be 18.7% for siblings of individ-
uals diagnosed with ASD. This reoccurrence risk is higher
than previously reported rates of 3 to 10%, once data
which have been distorted due to families who stop having
children once a child has been diagnosed with the devel-
opmental disorder have been removed [18].

ASD is recognised as a multifactorial disorder with
other risk factors contributing to the phenotype. Studies
have shown that serotonin and genetic differences in
serotonin transport could contribute to the development
of ASD, as serotonin has a vital role in stimulating cell
proliferation in the developing brain during pre- and
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postnatal periods as well as in early childhood [14].
Studies have shown macroscopic and microscopic brain
abnormalities may occur in utero and that the pathogen-
esis of this condition may begin during the prenatal
period [15,19,20].

Comorbid conditions and ASD

Comorbid conditions are common in children and fam-
ilies with ASD. Parents of affected children have increased
rates of stress, anxiety and depression [21]. Comorbid be-
havioural and developmental disorders in people diag-
nosed with ASD include intellectual delays, inattention,
attention-deficit hyperactivity disorder, aggression and dis-
ruption, depression or anxiety, sleep disruption or sensory
differences [22,23]. Other comorbidities include gastro-
esophageal reflux, flood selectivity and neurological disor-
ders, such as tics, seizures or migraine [24]. Many of these
conditions have been linked to the dysregulation of seroto-
nergic systems [25-34]. Abnormalities in serotonergic
function have been linked with ASD since Schain and
Freedman reported hyperserotonemia in 1961 [35]. This
observation has been confirmed in subsequent studies
where in 25 to 33% of individuals diagnosed with ASD,
whole blood serotonin levels were found to be elevated
[36]. Furthermore, family members of children diagnosed
with ASD with hyperserotonemia also exhibit raised blood
serotonin levels [37].

Physiological actions of serotonin and its regulation by
serotonin reuptake transporter (SERT)

Serotonin is synthesised from the essential amino acid
L-tryptophan. L-tryptophan is hydroxylated to 5-
hydroxytryptophan (5-HTP) then decarboxylated by
aromatic-L-amino acid decarboxylase to serotonin [38].
Serotonin produced peripherally does not cross the
blood-brain barrier of the mature brain and as such, the
neurotransmitter has to be synthesized in the CNS. It
must be noted, however, that the blood brain barrier is
not fully functional in the developing human brain until
2 years of age and it has been hypothesized that elevated
platelet serotonin may alter the monamine levels during
early brain development in autistic children [39]. After
its release from serotonergic neurons, serotonin will
bind its receptors at the synaptic site to activate intra-
cellular signalling pathways to induce physiological ef-
fects. The actions of serotonin are then terminated when
it is rapidly taken up by a SERT. Serotonin is catabolised
by the mitochondrial enzyme monoamine oxidase A to its
metabolite 5-hydroxyindolacetic acid (5-HIAA).

The behavioural effects of serotonin are numerous as
it regulates mood, appetite, body temperature, arousal,
moderates pain sensitivity, sexual behaviour and hor-
mone release [14]. Other than its actions as a neuro-
transmitter in the CNS, serotonin is released in the
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periphery to mediate a range of physiological activities.
The SERT proteins are localised to the presynaptic ter-
minals of the serotonergic neurons [40] and is found in
limited places such as the specialised cells of the gut
[41], placenta [42], lung [43], pancreas [44] and adrenal
chromaffin cells [45], blood lymphocytes [41] and plate-
lets [46]. In the periphery, tissues take up and store
serotonin in vesicles where it is released in response to
local stimuli [47]. The importance of SERT in regulating
normal tissue serotonin levels was demonstrated in
SERT-deficient mice, where platelets and most periph-
eral organs were found to be empty of serotonin. This
work showed that there are no compensatory mecha-
nisms such as other monoamine transport systems that
could re-establish tissue serotonin levels [47]. Platelets
express SERT proteins that are identical to brain SERT
[48] and they acquire serotonin released by the entero-
chromaffin cells as they circulate through the gut. Sero-
tonin captured by platelets have a role in injury where
serotonin release can alter blood flow [49] as well as
stimulating the production of adhesive alpha-granular
proteins in activated platelets [50], and as indicated pre-
viously, abnormal levels of platelet serotonin have been
observed in ASD-diagnosed children and their relatives.
Chronic use of selective serotonin reuptake inhibitors
(SSRIs) decrease platelet serotonin content, protects
against myocardial infarction or intensifies bleeding epi-
sodes [51,52]. Subsequently, excess serotonin uptake may
contribute to platelet hyperactivity and thrombosis as
reported, with an association of SERT polymorphisms
with cardiovascular disease [53]. The presence of SERT
proteins on the placental brush border membrane, and
the role of serotonin in vascular function indicates that
serotonin may have a role in placental function and there-
fore, growth and development of the human foetus [42].
Serotonin is synthesized by enteric neurons and entero-
chromaffin cells of the gut where it locally regulates di-
gestive processes [54,55]. It can be released into the blood
or into the lumen of the gut where it can modify intestinal
transport, proliferation of gastrointestinal epithelium and
modulation of intestinal motility. Serotonin inhibits gastric
acid secretion and may be an endogenous enterogastrone,
and stimulates the production and release of gastric and
colonic mucus [56]. In the gastrointestinal tract, serotonin
acts as a crucial signalling molecule initiating responses
such as nausea, vomiting, and peristaltic and secretory re-
flexes [57]. Serotonin is taken up into the B-cells of the
pancreas, where it is stored in granules that contain insu-
lin to modify insulin release [44].

Serotonin has specific functions in the CNS and in the
periphery where it regulates many physiological activ-
ities. Problems in serotonergic signalling in some of
these systems have been implicated as comorbidities that
occur with ASD as discussed in the previous section.
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The role of serotonin in neuronal function and development
An appreciation of the roles of serotonin as a neuro-
transmitter and in neuronal growth, particularly during
early development, reveals why perturbations in the
serotonin signalling systems could contribute to the de-
velopment of ASD. The serotonergic system is one of
the most widely distributed and one of the earliest to de-
velop in the mammalian embryo [58].

In the brain, the majority of serotonergic neurons are
located in the median and dorsal raphe nuclei, which
project to the cortex or hippocampus, respectively. The
cell bodies of the serotonergic neurons are found in
clusters, most of which are located in the raphe nuclei of
the midbrain, pons and medulla [59]. The serotonergic
system innervates virtually all areas of the brain and se-
rotonergic neurons can be detected in the human brain
from the fifth gestational week, where they grow and
rapidly multiply [60].

With regards to the control of behaviour the two most
important clusters of serotonergic neurons are found in
the dorsal and medial raphe nuclei, both of which send
neuronal projections to the cerebral cortex. As well as its
role as a neurotransmitter, serotonin acts as a trophic or
differentiation factor in early neurogenesis, where changes
in serotonin levels during brain development have been
reported to alter neuronal differentiation [61,62].

SERT is a significant contributor to moderating neuronal
serotonin levels. There are a significant number of internal
and external influences that can alter SERT expression and
function from early embryonic stages through to adoles-
cence. And although these influences continue to guide
SERT expression and activity throughout adulthood, SERT
activity during early periods of human development appear
to be vital for guaranteeing normal development [63]. In
rodent studies, decreased or increased brain serotonin dur-
ing the postnatal period of development results in the dis-
ruption of synaptic connectivity in sensory cortices in the
brain [64-66]. In human studies, serotonin has been dem-
onstrated to be important for prenatal and postnatal brain
development [67]. Irregularities in brain serotonin levels
can cause asymmetric development of the serotonergic sys-
tem which leads to incorrectly connecting neural circuits
[68]. Changes in serotonergic function and signalling have
been found to be associated with ASD [67]. Humans
undergo a period of high brain-serotonin synthesis capacity
during childhood, a process affected in autistic children
[69]. In humans, serotonin activity as measured by the
cerebrospinal fluid (CSF) levels of the metabolite 5-HIAA,
is higher in children when compared to adults [70,71].
5HIAA levels in the CSF of children with ASD has been
reported to provide a reliable measurement of neural sero-
tonin turnover [14]; however, many studies have indicated
a reduction or no change in CSF 5HIAA levels in individ-
uals diagnosed with autistic disorders [72,73]. As such, the
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levels of serotonin metabolites present in the CSF of ASD-
diagnosed individuals is still not firmly established, nor is
the impact of blood serotonin levels and how they relate to
brain serotonin levels [68].

Functional neuro-imaging studies using positron emis-
sion tomography (PET) have shown diminished sero-
tonin synthesis in children with ASD between the age of
2 and 5 years [69]. The short-term depletion of L-
tryptophan has been shown to exacerbate repetitive be-
haviour and elevate anxiety in autistic individuals [74],
and drug treatment with selective serotonin re-uptake
inhibitors, which interact with SERT, have been shown
to be effective in decreasing repetitive and/or obsessive
behaviour in some but not all autistic individuals [75].

The main issue with the studies investigating 5SHIAA
levels in the CSF, platelet serotonin or neuronal sero-
tonin synthesis is that they are completed in cohorts of
individuals diagnosed with ASD at different ages and
growth stages. The role of serotonin in neuronal devel-
opment changes throughout infancy and childhood as
do the environmental factors that can alter serotonergic
systems and function.

SERT structure and function
Intracellular and extracellular serotonin levels are con-
trolled through tissue SERT expression levels and trans-
porter activity. SERT is a protein consisting of 630
amino acids and has a similar structure to the noradren-
aline transporter (NET) and dopamine transporter
(DAT). In vitro experiments with SERT have demon-
strated that phosphorylation state of the transporters is
controlled by several kinase and phosphatase signalling
pathways which alters movement of serotonin through
the transporter [76]. SERT-medicated serotonin uptake
is driven by a Na'/Cl" transmembrane ion gradient [77].
SERT proteins can be regulated by numerous protein
kinase (PK) linked pathways, which include the signal-
ling molecules protein kinase C (PKC), protein kinase G
(PKG) and p38 mitogen-activated protein kinase
(MAPK) [78-80]. Extracellular serotonin can induce the
phosphorylation and downregulation of SERT through
PKC signalling pathways [81]. Several G-protein coupled
receptors such as adenosine, histamine and a,-adrener-
gic receptors also modulate SERT activity [79,82] as well
as inflammatory cytokines such as IL-10 and IFN-y, and
TNE-a [83-85]. SERT is the major mechanism by which
serotonin uptake from extracellular fluid occurs; how-
ever, when SERT function or expression is altered and
the levels of serotonin are elevated, other monoamine
transporters that have a lower affinity for serotonin such
as DAT and NET will transport serotonin [86].
Gain-of-function SERT-coding variants have been
reported with some SNPs in the gene that encodes SERT,
SLC6A4, causing a change in the amino acid sequence of

Page 4 of 16

SERT [87]. These are rare genetic variants, which repre-
sent a frequency of much less that 1% of the population.
Human variants such as Ile425Leu, Phe465Leu and
Leu550Val when expressed in HeLa cells have been shown
to exhibit a gain of serotonin transport phenotype due to
elevated expression of the transporter and altered regula-
tion via the PKG/p38 MAPK signalling pathways [88]
whereas the Gly56Ala variant increases in serotonin trans-
port across cell membranes with no changes in transporter
numbers [89].

The Gly56Ala variant has been reported to have a
higher prevalence in individuals diagnosed with ASD
and is associated with both sensory aversion and rigid-
compulsive behaviour [90], whereas the Ile425Val variant
(albeit the same locus, different amino acid substitution
to Ile425Leu) is associated with obsessive-compulsive
disorder and Aspergers syndrome [91].

To further investigate the gain of function activity of the
Gly56Ala variant in vivo, transgenic mice expressing the
SERT Ala56 were developed and exhibited normal growth
patterns and fertility [92]. Further studies on the trans-
genic Gly56Ala mice showed they had increased CNS
serotonin clearance, enhanced serotonin receptor sensitiv-
ity and hyperserotonemia. The mice also exhibited alter-
ations in social function, communication and repetitive
behaviours [93]. Similarly in other transgenic mice,
overexpression of the SERT protein caused a reduction in
the brain region levels of serotonin and enhanced sensitiv-
ity of postsynaptic 5-HT, 5 receptors was observed [94].

In summary, SERT function is regulated via several
signalling systems. When SERT tissue expression in-
creases or SERT function is enhanced, serotonin uptake
is increased, which diminishes levels of the neurotrans-
mitter in the synaptic cleft and causes an increase in
sensitivity of postsynaptic serotonin receptors to sero-
tonin. In human and animal studies where increased
SERT function was observed neurological symptoms
similar to those observed in ASD were reported.

Genetics of SERT in ASD

ASD is a genetically inherited disorder and SERT has been
the focus of much research due to its prominent role in
serotonin homeostasis. SERT is encoded by the SLC6A4
(Solute carrier family 6 (neurotransmitter transporter,
serotonin, member 4) gene. Several gene variants of
SLC6A4 that are associated with ASD alter the structure,
function or expression of SERT [47]. SERT functions in all
serotonergic systems through transport-mediated regula-
tion of serotonin release and activation of homo- and
hetero-receptors in brain, platelets and peripheral organs.
Changes in the function of SERT alters the affinity and ex-
pression of serotonin receptors, as well as the pharmaco-
kinetics of serotonin [47]. Human SLC6A4 maps onto
chromosome 17q11.2 [95] and it is one of several genetic
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loci that has been identified as predisposing to ASD
[96,97]. The gene is composed of 15 exons spanning ap-
proximately 40 kb. The sequence of the transcript predicts
a protein containing 630 amino acids with 12 transmem-
brane domains. Alternative promoters and splicing of the
code involving exons 1A, B, C and the 3’ untranslated re-
gion results in variable mRNA products. Polymorphisms,
which alter the expression of the SLC6A4 gene and there-
fore, SERT protein levels, have been the focus of research
into the genetic inheritance of ASD and as such, polymor-
phisms within the 5-HTTLPR promoter sequence, muta-
tions in the coding sequence, or intronic mutations of the
SERT have been reported to be linked to ASD in some but
not all studies [1,47,89]. Two major polymorphisms in the
SERT gene have been of major interest. First, a variable
number of tandem repeats (VNTR) occurs in the second
intron of the gene [98]. Second, basal and induced human
SERT gene transcription is differentially modulated by al-
lelic variants of the SERT gene promoter [98]. The
SLC6A4 5-HTTLPR promoter sequence is located ap-
proximately 1 kb upstream of the transcription initiation
site, contains two variable repeat length polymorphisms
known as long (L) with 16 repeat elements, or the 44-base
pair (bp) shorter (S) variant with 14 repeat elements
[95,99], which determines the expression of the SERT in
the pre-synaptic axonic membranes. The L/L variant of the
5-HTTLPR promoter region expresses significantly (1.4- to
2.0-fold) more transporter protein compared to L/S or S/S
variants [100,101]. Higher SERT mRNA levels and in-
creased serotonin uptake is evident in lymphoblasts of the
L/L homozygotes compared to those with at least one copy
of the S allele [102]. The S/S polymorphism reduces tran-
scriptional efficiency of the SERT promoter to reduce the
SERT expression and serotonin uptake in lymphoblasts
[102]. Therefore the L/L variant was proposed to contrib-
ute to a lower concentration in the synaptic cleft, although
this is not consistently supported by the literature [100].
The S/S polymorphism has been reported to be associated
with psychiatric disorders including neuroticism [99]
schizophrenia [103], anxiety [104], depression [105], sui-
cide [106,107], ASD [108] and GI syndromes such as irrit-
able bowel syndrome [109,110].

The L variant is also correlated with higher rates of
serotonin uptake into platelets [111,112], suggesting that
the S variant may act as a dominant allele [101]. The re-
sults of multiple studies of the 5-HTTLPR and ASD
have been inconsistent, showing an association of the
short [113-116] or long allele [117,118], and some stud-
ies have found no association [119-121].

There is substantial evidence that ASD is genetically
inherited and current research has evaluated many poly-
morphisms that could alter SERT expression in ASD
without consistent results, suggesting that the genetic
changes associated with SERT have yet to be identified.
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At the same time ASD is associated with multiple poly-
morphisms in the SLC6A4 gene with individuals hetero-
zygous for the Gly56Ala plus 5-HTTLPR L/L promoter
variants [73], and other studies into SLC6A4 and other
psychiatric disorders suggests that haplotypes (multiple
alleles) that include the 5-HTTLPR variants may con-
tribute to this disorder [122,123].

Prenatal conditions and ASD

Specific maternal illnesses, conditions and treatments can
result in adverse neurodevelopmental outcomes in children
[124]. Perinatal complications place an infant at significant
risk for mental, neurological and behavioural disorders
[125]. Maternal metabolic conditions may increase the risk
of ASD. Maternal Type 2 diabetes, hypertension, and obes-
ity have been identified as risk factors for ASD and other
developmental disorders [124,126]. Prenatal factors such as
advanced maternal (and paternal) age, bleeding or gesta-
tional diabetes have been associated with the risk of ASD
[127,128]. An Australian study has linked an increased risk
for the development of intellectual disabilities (which in-
cluded ASD) with maternal asthma [124]. Another report
observed that maternal asthma increased the risk of ad-
verse fetal and maternal outcomes such as low birth
weight, preeclampsia, hypertensive disorders and gesta-
tional diabetes [129]. A high rate of autoimmune diseases
occurs in families with ASD indicating that immune dys-
function could combine with other environmental factors
in the development of ASD [130]. Parental psychiatric his-
tory and prenatal environmental factors also contribute to
an increased risk of developing ASD [131].

Prescriptions taken during the pregnancy, length of
labour, viral infections, abnormal presentation during
birth, and a low birth weight could also be factors that
predict outcomes of infantile ASD [125]. Furthermore,
the risk of ASD development in preterm babies who are
small for their gestational weight is increased, whereas
preterm babies who are large for their gestational weight
have a reduced risk of ASD [132]. Foetal stress during
delivery may also increase the risk of ASD [128]. Overall,
epidemiological studies have identified factors including
gestational diabetes, stress, infections and inflammatory
disorders as prenatal risk factors for ASD. Many of these
conditions are known to directly or indirectly elevate
cortisol levels [133]. Taking oral corticosteroids during
pregnancy confers increased risk of lower birth weight
and congenital malformations [129]. Elevated prenatal
cortisol is known to negatively affect the behaviour of
newborn children with increased irritability, attention
and temperament problems [134,135]. Excess plasma
cortisol levels have been implicated in the aetiology of co-
morbid illnesses associated with ASD, such as depression,
anxiety, dyspepsia and migraine [136,137] (see Table 1).
Furthermore, elevations in plasma cortisol and platelet
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serotonin levels have been observed in schizophrenic
patients [138]. Hence, there is evidence to indicate that
excess cortisol levels co-exist with serotonin-selective
pathologies.

Cortisol regulation

Cortisol levels rise significantly during gestation and corti-
sol is an important hormone involved in the development
of the fetus. The following sections will review cortisol
regulation, physiological actions and its role in metabolic
syndromes. The modulation of cortisol by the reproductive
hormones and its contribution to gestational diabetes will
also be discussed. Glucocorticoids such as cortisol are ster-
oid hormones that are released by the adrenal cortex to
regulate carbohydrate metabolism. The hypothalamic re-
lease of corticotrophin releasing hormone (CRH) regulates
the secretion of adrenocorticotrophic hormone (ACTH)
from the anterior pituitary gland, which in turn stimulates
the release of cortisol from the adrenal gland. It is a tightly
regulated system in which increased plasma cortisol leads
to feedback inhibition of both CRH and ACTH [143]. Nor-
mal plasma levels of cortisol vary significantly according to
the time of day with levels highest in the morning at
0800 h (138 to 635 mmol/L); at 1600 h the cortisol level is
83 to 413 mmol/L, and at 2000 h it is 50% of the 0800-h
level. Urinary cortisol (24-h urine) in children is 5.5 to
74.0 mmol/L and in adolescents it is 14.0 to 152.0 mmol/L
[139]. The human hypothalamic pituitary adrenal axis
(HPA) refers to the hormonal feedback mechanisms that
regulate cortisol levels in the body. The HPA is controlled
with circadian rhythms [144] and ultradian rhythms with
discrete pulses of ACTH and glucocorticoids to regulate
cortisol levels in the body [144,145].

As part of the stress responses many brain regions, in-
cluding the limbic and sympathetic systems, regulate HPA
activity [146,147]. Serotonin can regulate the HPA axis
through serotonergic pathways linked to the hypothal-
amus or hippocampus to stimulate CRH or ACTH release
or acting as a local paracrine factor in the regulation of
cortisol from the adrenal cortex [148,149]. HPA axis
dysregulation is caused in part by the release of various in-
flammatory cytokines, including TNF-a, IL-1 and IL-6
where they stimulate CRH production [148].

Cortisol can be inactivated by the enzyme 11f-
hydroxysteroid dehydrogenase (11p-HSD)-2, which is
found in mineralocorticoid receptor-rich tissues such as
the kidney [150] and adipose tissue [151] but not the
liver. Cortisol has a high affinity for the mineralocortic-
oid receptor, however, inactivation to cortisone by 11f3-
HSD2 renders it unable to bind to the mineralocorticoid
receptor and facilitates aldosterone binding to this re-
ceptor [152]. In tissues, including liver, adipose, brain
[150] and blood [153], cortisol can be regenerated from
its inert form, cortisone, by the enzyme 11B-HSD-1
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Table 1 Clinical outcomes of tissue-specific glucocorticoid
excess [139-142]

Tissue/system Symptom

Nervous system Anxiety
Insomnia
Depression

Memory dysfunction

Liver Gluconeogenesis

Lipogenesis

Skeletal muscle Insulin resistance

Atrophy
Fatigue
Bone Osteoporosis
Blood Elevated blood glucose

Impaired fasting glucose
Hypokalaemia
Dyslipidaemia

Obesity

Adipose tissue
Fat redistribution

Weight gain

Cardiovascular system Hypertension
Pre-eclampsia
Sodium/water retention

Oedema

Immune system Immune suppression - infections

Delayed wound healing

Skin Hirsuitism
Striae
Bruising
Thinning
Acne

Delayed wound healing

Other Dyspepsia

Increased appetite

Impaired growth in children
Suppressed HPA-axis function
Cataracts

Glaucoma

[154]. 11B-HSD1 is a reduced nicotinamide adenine di-
nucleotide phosphate (NADP(H))-dependent microsomal
enzyme that converts cortisone into cortisol. Expression of
11B-HSD1 can also be induced in many other tissues in-
cluding fibroblasts, skeletal and smooth muscle, and im-
mune cells [155-158]. The 113-HSD1 enzymes are known
important regulators of hormone action at the tissue level
[150]. Adipocyte-derived leptin and oestrogen upregulate
11B-HSD1 [159,160] to increase both intracellular and
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circulating cortisol levels. In the circulation, over 90% of
cortisol is bound to corticosteroid binding globulin (CBG).
It is only the unbound free portion that is able to diffuse
into the cell and exert its effects.

Glucocorticoids are abundant highly widespread nuclear
hormones [161,162]. They exert their actions in almost all
tissues, influencing the expression of a large proportion of
the human genome. Binding of the glucocorticoid to its
receptor changes the transcription rates of target genes. A
large number of molecules participate directly or indir-
ectly in the signalling cascade [161,163]. Glucocorticoids
are pivotal in regulating many aspects of resting and
stress-related homeostasis. They are released as part of the
stress response and have a catabolic effect to liberate sub-
strates for mitochondrial oxidation [164].

Physiological effects of cortisol

Cortisol stimulates gluconeogenesis and fatty-acid mo-
bilisation in the liver and adipose tissue. One of the
most important effects of cortisol is that it upregulates
glucose production. In the liver, cortisol increases the
expression of the gluconeogenic enzymes phosphoenol-
pyruvate carboxykinase-C (PEPCK-C) and glucose-6-phos-
phatase (G6Pase), which releases glucose from glycogen
into the circulation [165]. Glucocorticoids primarily act by
the activation of the glucocorticoid receptor (GR) and the
regulation of transcription. The GR is a ligand-regulated
nuclear receptor that belongs to the steroid hormone
receptor family. The GRs are expressed in almost all
tissues. Upon binding by cortisol, the GR moves to
the nucleus, binds specific glucocorticoid response
elements (GRE) and recruits co-activators and co-
repressors, which can increase or decrease gene tran-
scription [166,167]. The GR can also alter nuclear
translation without the GRE [168] and cortisol can also
exert non-genomic actions in stimulating endothelial
nitric oxide production [169].

Cortisol and metabolic syndrome

Prolonged elevation of cortisol can lead to hyperglycaemia
and insulin resistance as observed in Type 2 diabetes and
metabolic syndrome [164,170,171]. Glucocorticoids dir-
ectly inhibit insulin release from the B pancreatic cells
[172,173]. Cushing’s disease or hypercortisolism is a hor-
monal disorder that causes elevated cortisol levels. Ad-
verse effects linked to upregulation of the HPA axis occur
in patients with Cushing’s syndrome, causing outcomes
such as osteoporosis, immunosuppression, hypertension,
sleep disorders and glucose intolerance [174]. Other ef-
fects observed in women with high levels of cortisol in-
clude muscle wasting, striae, hirsuitism, acne, menstrual
abnormalities and infertility [140]. Individuals who de-
velop pathological states of glucocorticoid excess exhibit
all the features of metabolic syndrome, however, Cushing’s
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syndrome is rare and the circulating levels of cortisol are
normal in the majority of patients with obesity and Type 2
diabetes. One hypothesis is that tissue-specific deregula-
tion of cortisol metabolism may be involved in the intri-
cate pathophysiology of metabolic syndrome [175] and
that changes in the expression of 11B-HSD1 increase
tissue-specific levels of glucocorticoids [176,177]. Inhibi-
tors of 113-HSD1 are being evaluated in clinical trials for
the treatment of Type 2 diabetes. The drugs work by de-
creasing the amount of cortisol generated in the liver and
adipose tissue, thereby reducing gluconeogenesis and
fatty-acid breakdown [178]. Ketoconazole is a steroid syn-
thesis inhibitor that lowers cortisol in Cushing’s disease
[179] by reducing plasma cortisol levels without affecting
the CRH secretion in healthy adults [180].

Cortisol levels during pregnancy

Circulating and bound levels of cortisol both increase as
gestation proceeds to levels that are similar to those
detected in Cushing’s syndrome, with plasma levels of cor-
tisol reaching 2- to 3-fold higher than observed in non-
pregnant women [181-184]. The rise in cortisol levels
begins in week 11 and continues to rise and peak between
the first and second trimester to a maintenance level dur-
ing the third trimester [185]. The salivary cortisol in preg-
nant women is twice as high as in non-pregnant women
in the third trimester [181,186], and the circadian rhythm
of cortisol is partly blunted [181,186]. Plasma ACTH levels
rise throughout pregnancy reaching a peak during labour
and delivery, with placental ACTH production being a sig-
nificant contributor to hypercortisolism in pregnancy [181].
CRH is synthesized in the human syncytiotrophoblast and
released into both the maternal and fetal blood in signifi-
cant quantities [187,188]. In contrast to the hypothalamic
CRH system, the placental production of CRH is stimulated
by glucocorticoids [189], providing a positive feedback sys-
tem, which is a unique characteristic of placental CRH and
indicates a role for CRH in late stages of gestation [190].
Exposure to elevated cortisol levels early in the pregnancy
may accelerate placental synthesis and the release of
corticotrophic releasing hormone to precipitate early deliv-
ery [191]. Placental hypersecretion of CRH mid gestation
has been proposed as a predictive marker of subsequent
preterm delivery [192]. It has been postulated that towards
the end of the gestation period CRH stimulates cortisol
production in the foetal adrenal glands [193,194].

The effect of reproductive hormones on cortisol levels
during pregnancy

At the onset of gestation, progesterone and oestrogen are
secreted by the corpus luteum in moderate amounts. The
placenta then takes over progesterone and oestrogen syn-
thesis for the rest of the pregnancy. Progesterone secretion
can increase up to 40-fold by the third trimester during a
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normal pregnancy and oestrogens levels increase up to
30-fold by full term. Both progesterone and oestrogen re-
ceptors are expressed in the pancreatic islets of Langer-
hans and regulate P-cell viability and function [195].
Progesterone has a faster association for CBG than corti-
sol and higher levels of progesterone during pregnancy
may displace cortisol from CBG, increasing plasma corti-
sol [196]. Progesterone can also be converted to cortisol
via 17-a-hydroxylase and 21-hydroxylase in the adrenal
glands [197].

Increasing placental oestrogen stimulates the produc-
tion of CBG by the liver, therefore altering the pharma-
cokinetics of cortisol [181]. Fetal ACTH secretion is
increased as oestrogen is secreted in increasing amounts
by the placenta in late gestation [198]. Oestrogen esca-
lates and androgens reduce basal and stimulated ACTH
secretion [199]. The levels of circulating ACTH and cor-
tisol concentrations change during the normal menstrual
cycle in women, where the highest concentrations of
these hormones are measured in tandem with the
highest circulating levels of oestrogen [200]. Therefore,
oestrogen levels rise in women either during the men-
strual cycle or pregnancy, altering CBG production,
upregulating 113-HSD1 levels or directly stimulating the
pituitary gland, causing an overall rise in plasma cortisol.

Gestational diabetes

One of the prenatal risk factors for ASD is gestational dia-
betes. During late pregnancy mothers can develop insulin
resistance [201]. Gestational diabetes occurs in 2 to 3% of
all pregnant women [202], although more current estima-
tions indicate up to 14% of all pregnancies are affected by
gestational diabetes depending on the test criteria used
[203]. Elevated cortisol levels have been measured in preg-
nant women with impaired glucose tolerance or gesta-
tional diabetes [204]. Gestational diabetes is a growing
health concern for both the short- and long-term out-
comes for both mothers and their offspring [205]. Glucose
tolerance deteriorates in all women where a diminished
peripheral sensitivity to insulin develops [206]. Normal
pregnancy especially the third trimester is characterised by
elevated metabolic stress on maternal lipids and glucose
homeostasis, which includes insulin resistance and
hyperinsulinemia [207,208]. Progesterone receptors
expressed in pancreatic islet cells inhibit -cell prolifer-
ation to reduce insulin secretion and glucose tolerance
during pregnancy [209]. Known risk factors for gesta-
tional diabetes include excessive weight, advanced ma-
ternal age, family history of Type 2 diabetes and a
previous history of gestational diabetes [210-213].
Women with gestational diabetes have a high risk of de-
veloping Type 2 diabetes later in life [214,215]. Fetal
hyperglycaemia as an outcome of maternal hypergly-
caemia can contribute to excessive fetal growth [202].
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However, gestational diabetes has paradoxical effects of
fetal growth with outcomes of increased or decreased
birth weight [216]. About 85% of term newborn infants
are born with birth weights in the normal range of 2500
to 4000 g. Among full-term infants, 7 to 8% of new-
borns have a birth weight of <2500 g (10 percentile) and
a similar percentage are born overweight (>4000 g, 90
percentile) [216].

Causes of excess cortisol levels during pregnancy

While cortisol levels rise as gestation progresses, there are
events that may occur during the pregnancy that elevate
cortisol further. Many of the listed prenatal risk factors for
ASD have the potential to alter cortisol levels either dir-
ectly through stimulating the adrenocortical cells, the
HPA axis, or indirectly through modulating 113-HSD1 ex-
pression. Conditions that increase cortisol production dur-
ing gestation are listed below. For example, activation of
cortisol production is important for a role in host response
during acute or chronic stressful events such as sepsis and
viral infections [217]. Also inflammatory cytokines, such
as the interleukins (IL-1, IL-6) and TNF-a acting at the pi-
tuitary and adrenocortical levels, stimulate cortisol forma-
tion [217]. In patients with rheumatoid arthritis, the
cytokines TNF-q, IL-6 and IL-1 cause inflammation of the
synovial joints [218], which would alter cortisol produc-
tion in this cohort. Adenovirus and cytomegalovirus have
been shown to sequester into the adrenocortical cells to
stimulate cortisol production [219,220]. Iron deficiency
has been reported to elevate cortisol levels in pregnant
women through increased synthesis of CRH, resulting in
increased risk of preterm labour, hypertension and pre-
eclampsia [221]. Additionally, haemoglobin levels are in-
versely correlated with IL-6 levels [222]. Uncontrolled
asthma is associated with reduced placental 113-HSD2 ac-
tivity, which significantly increases fetal cortisol levels
[223]. Glucocorticoids are now the consensus treatment
for preterm labour occurring between gestational weeks
24 and 34 in nearly one in ten pregnancies in the USA, to
prevent the adverse consequences of respiratory distress
syndrome [224]. Prenatal depression and psychological
stress are associated with elevated cortisol levels, prema-
turity and low birth weights [225,226]. Increased waist cir-
cumference associated with advancing age, even in the
absence of weight gain [227] and obesity, are associated
with increased cortisol production [228,229].

Conditions during pregnancy that elevate cortisol levels
Condition

1. Obesity [229]

2. Infection [220]

3. Psychological stress [226]
4. Depression [225]
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5. Asthma [223]
6. Iron deficiency [221]
7. Preterm labour?® [224]

*Requiring dexamethasone treatment.

Cortisol and the placenta
In mammals glucocorticoids are central to fetal growth,
tissue development and maturation of various organs
[230]. Supraphysiological levels of glucocorticoids cause
fetal growth retardation in mammalian models and
humans, and reduced intrauterine growth is associated
with high maternal and fetal concentrations of glucocor-
ticoids [231,232]. Glucocorticoids are lipophilic and
readily cross the placenta, and in rat studies prenatal ex-
posure to the synthetic glucocorticoids dexamethasone
or betamethasone reduces birth weight [233]. Normally,
fetal physiological glucocorticoid levels are lower than
the maternal levels [234]. This gradient is achieved by
fetoplacental 11B-HSD2, which metabolises cortisol
[235]. This barrier is not impervious and as such a
minor percentage of maternal cortisol crosses to the
fetus [236]. The efficiency of placental 113-HSD2 varies
considerably [233,237] where the lowest placental 11p-
HSD2 activity and presumably, highest fetal exposure to
glucocorticoids, results in lower birth weights [223,237].
Some children diagnosed with ASD or who have
higher scores on ASD spectrum screening have low birth
weights [20,238,239], which could be an outcome of ele-
vated cortisol levels that occur during the prenatal
period. Furthermore, the placenta of female fetuses have
increased glucocorticoid inactivation and lower corticoid
receptor density than the placentas of males [240], which
may render males more vulnerable to elevated maternal
cortisol levels and explain gender differences in the
prevalence of ASD.

Cortisol and SERT expression

As excess cortisol is associated with many serotonin-
derived pathological conditions, its role in altering sero-
tonin function should be investigated. Certainly, evidence
is emerging for an effect of cortisol on SERT expression in
cells and tissue. Dexamethasone, a synthetic glucocortic-
oid, has been demonstrated to increase the mRNA and
protein expression of SERT in immortalized human B-
lymphoblastoid cells [241], an effect that was dependent
on a region located 1.4 kb upstream of the 5SHTT gene
transcription site and was elevated in both polymorphisms
of the 5-HTTLPR promoter sequence. Stress and elevated
cortisol has been demonstrated to elevate tissue SERT ex-
pression in rodent and human studies [242-244]. In a ro-
dent model, maternal administration of dexamethasone
during gestation produced persistent increases in (3H")
paroxetine (SSRI) binding to SERT in the brainstem and

Page 9 of 16

cortex without affecting the numbers of serotonergic
nerve terminals [245]. Interestingly, alterations in brain
serotonin levels were not offset by changes in the frac-
tional serotonin turnover rate [246].

Both forms of the 5-HTTLPR promoter sequence poly-
morphisms have been reported to be associated with ASD
[113-118]. However, neither polymorphism in the pro-
moter sequence has been demonstrated conclusively to be
associated with ASD. Similarly, allelic variants within the
5-HTTLPR, have been reported, which indicates that vari-
ants within the S and L alleles occur. These variants have
been investigated in a Caucasian and Japanese population,
demonstrating significant ethnic differences for the distri-
bution of alleles and genotypes [247]. However, common
polymorphism/s in the 5-HTTLPR promoter sequence
that confers increased subsceptibility to elevated cortisol
levels in the GR, GRE or coactivator sites, should be con-
sidered as a focus of genetic studies. The GRE consensus
sequence, the hexanucleotide TGTTCT, was originally
proposed, however, further evidence has indicated that the
GRE can involve an imperfect inverted repeat of the
hexanucleotide TGTTCT with a 3-bp spacer to create a
palindromic structure [248]. The GRE is very similar in
nucleotide sequence to the oestrogen response element
(ERE) where minor changes in base sequence for the ERE
can be converted to a GRE [249,250]. Changes in the nu-
cleotide sequence can also confer altered sensitivity to
GR-induced function [249,250]. Furthermore, the GR
interaction with the palindromic site promotes an allo-
steric change in the DNA-binding domain, to alter the
protein shape and promote dimerization with a second
GR monomer subunit [248]. Mutations in the GR DNA-
binding domain (Ser459Ala) and D loop (Pro493Arg)
causes the formation of a constitutive dimerization inter-
face, inducing GR dimerization on a non-specific DNA
[251]. Other SNPs in the GR, including ER22/23EK,
N363S and Bcll have been found to be associated with
glucocorticoid sensitivity and stress-induced cortisol re-
sponses, and provide potential targets for investigating the
genetic inheritance of ASD [252].

Evidence for elevated SERT or cortisol in children with ASD
It is the premise of this review that excessive plasma
levels of cortisol during pregnancy increase the expres-
sion of the SERT transporter, to alter serotonin levels
during gestation and modify prenatal neuronal develop-
ment in children diagnosed with ASD. Hence the best
time to measure changes in SERT expression would be
immediately after birth. During infancy the SERT ex-
pression will alter according to cortisol levels. Due to
the limitations of diagnosis in this cohort, most research
is completed in children age 4 to 9 years or older, and as
such, work to investigate neuronal SERT expression is
too late, as protein levels would be highly variable.
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Subsequently, the therapeutic use of SSRIs in children
with ASD has been questioned as this class of drug has
been demonstrated to have limited use in this cohort.
Again it would be anticipated that SSRI use would be
helpful when SERT expression is highest in younger
children [253]. Elevated platelet serotonin levels (or
SERT mRNA) may provide a simple test of elevated
SERT expression in newborn children.

Alternatively, we could appraise evidence of exposure to
excess cortisol in newborn children; however, again there
is little research that has been done in neonates. Reviewing
the effects of extraphysiological cortisol (see Table 1), the
following symptoms in newborn children could be
expected: insomnia, irritability, low cortisol levels or low
bone density. Two studies have measured bone density in
boys diagnosed with ASD (age 4 to 14 years) and found
reductions in bone mineral density or bone cortical thick-
ness. The authors attributed these findings to low vitamin
D levels or diet [254,255]. These findings did not account
for the possibility that they may have started from a lower
base. Also, children who are subjected to high cortisol
levels in utero are at risk of developing diabetes, however
little research has been reported on the long-term physical
outcomes of adults with ASD [256].

Conclusions

This review investigates the potential causes of ASD and
has focused on disruptions in serotonin signalling caused
by elevated SERT levels during the prenatal period. In-
creases in membrane SERT levels are driven in utero by el-
evated cortisol levels. Increased cortisol in pregnant
women may result in various clinical presentations includ-
ing gestational diabetes, hypertension or depression. It may
also be caused by excess anxiety or stress and inflamma-
tory disorders such as asthma or infections. Further studies
of excessive free cortisol levels during pregnancy should be
done in women who have previously had children with
ASD, or have a family history of anxiety, depression or dia-
betes. A standard protocol to measure free-cortisol levels
in women during gestation needs to be established.
Methods to measure free-cortisol levels include calculated
free cortisol (Coolen’s method), calculating the free-cortisol
index (ratio of serum cortisol to transcortin concentra-
tions) or quantifying salivary cortisol [217]. Cortisol is vital
for fetal development with respect to maturation of lung
function; however, prenatal exposure to excess glucocorti-
coids has also been shown to be detrimental to fetal
growth and have longer-term effects related to hyperten-
sion and type II diabetes in adult life [257,258].
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