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Background: Fragile X syndrome (FXS) is a common inherited form of intellectual disability caused by loss of
function of the fragile X mental retardation protein. Recent animal studies suggest that upregulated downstream
signaling by metabotropic glutamate receptor 5 (mGIuR5) might be an important mechanism for cognitive and
behavioral abnormalities associated with FXS. However, mGIuR5 density in human FXS remains unknown.

Methods: Receptor binding and protein expression were measured in the postmortem prefrontal cortex of 14 FXS
patients or carriers and 17 age- and sex-matched control subjects without neurological disorders. In-vitro binding
assays were performed using [*H]-labeled 3-methoxy-5-pyridin-2-ylethynylpyridine (MPEPy), a selective and
high-affinity negative allosteric modulator of mGIuR5, to measure receptor density and the radioligand’s dissociation
constant, which is inversely proportional to affinity. Immunoblotting was also performed, to measure mGIuR5

Results: The mGIuR5 density increased with marginal significance (+16%; P = 0.058) in the prefrontal cortex of FXS
patients or carriers compared with matched healthy controls. No significant change in dissociation constant
(—49%; P = 0.293) was observed. Immunoblotting found a significant elevation (+32%; P = 0.048) in mGIuR5

Conclusions: Both mGIuR5 binding density and protein expression were increased in the brains of FXS patients or
carriers, but only expression was significantly different, which could be because of the small sample size and
moderate variability. Another important caveat is that the effects of psychotropic medications on mGIuR5
expression are largely unknown. Future in-vivo measurement of mGIuR5 with positron emission tomography might
characterize the role of this receptor in the pathophysiology of FXS and facilitate trials of mGluR5-oriented
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Background

Fragile X syndrome (FXS), the most common cause of
inherited intellectual disability, is associated with mul-
tiple cognitive, behavioral, and neuropsychiatric abnor-
malities [1]. The disorder is caused by expansion of the
CGG trinucleotide repeat in the 5° untranslated region
of the fragile X mental retardation 1 (FMRI) gene lo-
cated at the distal end of the long arm of the X chromo-
some. The length of repeat expansion determines the
expression of FXS disorder: alleles containing <44
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repeats are considered ‘normal, those containing be-
tween 44 and 54 repeats form a ‘gray zone, those
containing between 55 and 200 repeats are ‘premutation
carriers; and alleles with >200 repeats are ‘full mutations’
[2]. Only the full mutation leads to hypermethylation of
the FMRI1 promoter and consequent transcriptional si-
lencing of the FMR1 gene that encodes fragile X mental
retardation protein (FMRP) [3]. FMRP is a cytoplasmic
RNA-binding protein known to repress the translation
of specific messenger RNAs at neuronal synapses,
thereby regulating expression of various synaptic pro-
teins [4,5]. FMRP thus plays a major role in synaptic sig-
nal transduction, and its loss dysregulates neuronal
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signaling pathways. One of the key signaling pathways
believed to be dysregulated in FXS as the result of a loss
of FMRP is mediated by metabotropic glutamate recep-
tors (mGluRs), particularly subtype 5 (mGluR5). Studies
have demonstrated that dysregulated mGIluR5 signaling
results in uncontrolled activation of synaptic protein
synthesis, owing to the loss of normal repressor action
of FMRP on protein synthesis [6,7].

Recent studies using various animal models of FXS
have suggested that many features of the FXS phenotype,
including behavioral abnormalities, cognitive deficits,
and altered dendritic spines, may be attributable to exag-
gerated mGIuR5 signaling. Some studies that sought to
suppress mGIuR5 signaling by genetic knockdown or by
using negative allosteric modulators of mGluR5, such as
2-methyl-6-(phenylethynyl)-pyridine (MPEP), corrected
most of these phenotypic features in mouse models of
EFXS [8,9]. Although evidence from rodent studies sug-
gests that mGIuR5 signaling is increased in FXS,
mGluR5 density has yet to be examined in the postmor-
tem brain tissue of individuals with FXS. Answering this
question is important because measuring mGIuR5 levels
could allow categorization of FXS patient subgroups
based on receptor density and, relatedly, help identify
those FXS patients who might be promising candidates
for treatment with mGIluR5 allosteric modulators.

To determine whether mGIuR5 levels are altered in
FXS, we measured mGIuR5 receptor density via radio-
ligand binding assays, and expression levels via Western
blotting. These measures were ascertained in the postmor-
tem brain tissue of FXS patients and premutation carriers,
and compared with measures ascertained in age- and sex-
matched healthy controls.

Methods

Human postmortem tissues

Postmortem human brain tissue from the prefrontal or
frontal cortex was provided by the National Institute
of Child Health & Human Development Brain and
Tissue Bank for Developmental Disorders, University of
Maryland, Baltimore, MD, USA, and by the Hagerman
Laboratory, Department of Biochemistry and Molecular
Medicine, University of California, Davis, CA, USA. As
per US regulation 45 CFR 46, these postmortem speci-
mens from deceased subjects were exempted by the Of-
fice of Human Subjects for ethical approval and did not
need subject consent for use in the study. Tissue sam-
ples were available for 14 white male FXS patients or
carriers, of which one had fragile X-associated tremor
ataxia syndrome (FXTAS) and 17 white male healthy
controls; the demographic characteristics of the samples
are presented in Table 1. The FXS patients or carrier
samples and the control samples were matched for age
and postmortem interval; other demographic differences
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were considered insignificant for this study. Medication
status before death was not available for many of the
samples. Because only four samples from FXS carriers
were available, those four samples were pooled with FXS
patient samples for analysis purposes.

Tissue preparation

Tissue samples were homogenized using a mortar and
pestle in fresh ice-cold, 50 mM Tris—HCI buffer (1:10 w/v)
completing 3 x 10 passes with cooling on ice between ho-
mogenizations. Homogenates were centrifuged at 20,000 g
and 4°C for 25 minutes, followed by removal of the super-
natant. Pellets were then resuspended in fresh ice-cold 50
mM Tris—HCI buffer and centrifuged again at the same
settings. Pellets were resuspended in fresh ice-cold 50 mM
Tris—HCl buffer at a protein concentration of approxi-
mately 1 mg of protein/mL. Aliquots were stored in a
freezer at —80°C until further use. Protein concentrations
were determined using the Bradford protein assay (Bio-
Rad, Hercules, CA), and absorption was read at 595 nm.

Competition binding assays

An ethanolic solution of [*H]-labeled 3-methoxy-5-
pyridin-2-ylethynylpyridine (MPEPy), a selective and high-
affinity negative allosteric modulator of mGIuR5, was
purchased from American Radiolabeled Chemicals Inc.
(St. Louis, MO) at a specific activity of 2.96 TBq/mmol
and a radiochemical purity of 99%. Nonradioactive MPEPy
was purchased from Tocris Bioscience (Ellisville, MO). The
chemical purity of nonradioactive MPEPy was 100%, as de-
termined by high performance liquid chromatography.

The specific binding, mGIuR5 receptor density
(Bmax)» and the radioligand’s dissociation constant
(Kp), which is inversely proportional to affinity, were
determined in human brain tissue homogenates using
standard, steady-state homologous competition bind-
ing assays [10,11] using 048 nM [*HJMPEPy and
concentrations of unlabeled MPEPy ranging from 0.1
nM to 1 uM. Nonspecific binding was determined in
the presence of 10 pM of unlabeled ligand. Assays
were performed for each tissue sample in triplicate
with 0.1 mg protein per assay tube in a final volume
of 300 pL, and incubated with shaking for 2 hours at
room temperature. After incubation, assay reaction
was terminated by filtration using a cell harvester
(Model# M-48T, Brandel Inc., Gaithersburg, MD)
through Whatman GF/B filters (Brandel Inc,
Gaithersburg, MD) followed by 3 x 1 mL washes with
ice-cold 50 mM Tris—HCI buffer. Whatman GF/B fil-
ters were preincubated with 0.5% polyethylenimine for
30 minutes before filtration. Scintillation fluid (Ultima
Gold, PerkinElmer, Downers Grove, IL) was added at
4 mL/vial; vials were counted on a Tri-Carb 3100TR
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Table 1 Demographic data for human brain tissue samples
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Case® Diagnosis CGG repeats Age Postmortem Cause of death Central nervous
(years) interval (hours) system drug use®
UMB-1421 Fragile X 563¢, 297° 69 17 Cancer NA
UMB-1938 Fragile X NA 62 26 Hypertensive cardiovascular disease NA
UMB-4751 Fragile X carrier 88 21 5 Pulmonary edema or pneumonia Antiepileptics
UMB-4806 Fragile X NA 9 22 Cardiac arrest Clonidine
UMB-5006 Fragile X carrier 150 85 5 Complication of disorder NA
UMB-5319 Fragile X NA 71 17 Complication of disorder NA
UMB-4664 Fragile X carrier 100 71 3 Complication of disorder NA
UMB-5212 Fragile X carrier (FXTAS) NA 80 12 Complication of disorder NA
1031-08-GP Fragile X 436 57 20 Food choking Antipsychotics
JS-03 Fragile X NA 25 16 NA NA
1005-06-CB/XX Fragile X NA 55 - NA NA
1018-10-RH Fragile X NA 60 55 NA NA
1031-09-L.Z Fragile X 4299340 - 440° 64 12 Cancer None
1033-08-WS Fragile X > 3399 78 18 Chronic obstructive pulmonary disease or Antiepileptics
cardiac block
UMB-1442 Healthy NA 22 7 Multiple injuries NA
UMB-5082 Healthy NA 68 19 Arteriosclerotic cardiovascular disease None
UMB-5123 Healthy NA 61 24 Arteriosclerotic cardiovascular disease NA
UMB-1103 Healthy NA 21 7 Accident, multiple injuries NA
UMB-1674 Healthy NA 8 36 Hyperthermia and drowning NA
UMB-5182 Healthy NA 86 23 Hypertensive cardiovascular disease NA
UMB-1104 Healthy NA 35 12 Accident, multiple injuries Alcohol
UMB-4593 Healthy NA 33 8 Cardiac arrhythmia NA
UMB-4598 Healthy NA 45 6 Dilated cardiomyopathy NA
UMB-4735 Healthy NA 73 21 Chronic obstructive pulmonary disease NA
UMB-5171 Healthy NA 79 5 Chronic obstructive pulmonary disease or None
peripheral vascular disease
UMB-1039 Healthy NA 49 9 Accident, multiple injuries NA
UMB-1227 Healthy NA 52 16 Pulmonary embolism NA
UMB-1228 Healthy NA 47 13 Arteriosclerotic cardiovascular disease NA
UMB-1570 Healthy NA 48 14 Arteriosclerotic cardiovascular disease NA
UMB-1907 Healthy NA 54 17 Accident, multiple injuries NA
UMB-4915 Healthy NA 49 5 Arteriosclerotic cardiovascular disease NA
Number of subjects (n) Diagnosis Age (years)© Postmortem interval (hours)©
Mean Range Mean Range
14 Fragile X (n = 10) or carrier (n = 4) 58 9to 85 17 3to 55
17 Healthy 49 8 to 86 14 5to 36

FXTAS, fragile X-associated tremor ataxia syndrome; NA, not available; ®all brain tissues were from white male subjects and from prefrontal cortex except for case
1033-08-WS, which was from frontal cortex; °at time of death; “no significant difference was found in age (t = 1.11, df = 29, P = 0.276) or postmortem interval
(t = 0.83, df = 28, P = 0.411) between FXS patients or carriers and healthy controls; “hypermethylated repeats; unmethylated repeats.

liquid scintillation counter (PerkinElmer, Downers

Grove, IL) for five minutes each.

Western blotting

Cortical tissue samples were boiled in Laemmli sample
buffer and 20 pg of total protein resolved on 10% SDS
PAGE gels. All gels were loaded with an equal number
of control and FXS samples, and these were loaded in an
alternating fashion, to distribute both genotypes equally

across the gel. Gels were transferred to nitrocellulose
membranes (Bio-Rad, Hercules, CA) and stained for
total protein using the Memcode staining kit (Pierce
Biotechnology, Rockford, IL, USA). Immunoblotting was
performed using 2 pg/mL primary antibody to mGluR5
(Neuromics, Northfield, MN, USA), HRP-conjugated
secondary antibody (GE Healthcare, Milwaukee, WI,
USA), and ECL plus (GE Healthcare, Milwaukee, W1,
USA).



Lohith et al. Molecular Autism 2013, 4:15
http://www.molecularautism.com/content/4/1/15

Data and statistical analysis

To determine the receptor density and dissociation con-
stant, specific binding from triplicate measurements of
each sample of competition assay data was analyzed
using the iterative nonlinear regression curve-fitting
software in GraphPad Prism software (version 5.0,
GraphPad Software Inc., San Diego, CA, USA). The
equation for specific binding is:

B max - [Hot]

Specific binding [Hot] + [Cold] + Kp

[Hot] and [Cold] represents [PHJMPEPy and unlabeled
MPEPy respectively. One-site and two-site homologous
competition models were fitted to the data using the
least-squares algorithm, and the model was selected
using the F test. The null hypothesis, that the data would
fit a one-site model, was rejected if the P value was less
than 0.05. The two-site model was rejected if the recep-
tor density from low-affinity sites had inappropriately
high values [12].

The level of mGIuR5 expression was measured by
densitometry using Quantity One software (Bio-Rad),
and normalized to a one-dimensional line-scan of the
total protein Memcode signal in the same lane. To cor-
rect for blot-to-blot variance, each signal was normalized
to the average signal of all lanes on the same blot. Out-
liers were removed from data analysis if the final values
fell outside plus or minus two standard deviations. All
gels were loaded and analyzed blind to genotype and
treatment.

Data were analyzed for normal distribution by the
Shapiro-Wilk normality test using SPSS Statistics (Ver-
sion 17.0, SPSS Inc., Chicago, IL, USA). If the samples
were normally distributed, statistical comparisons were
performed using the two-tailed unpaired Student’s ¢-test;
otherwise, the nonparametric Mann—Whitney test was
performed to obtain P values. Correlations between re-
ceptor density and expression levels were examined with
Pearson’s correlation test. A P value of less than 0.05
was considered statistically significant, between 0.05 to
0.1 as marginally significant and more than 0.1 as
nonsignificant.

Results

Density and expression levels of mGIuR5 were marginally
higher in prefrontal cortex of FXS patients or carriers

The binding curves generated from homologous compe-
tition binding assays performed on postmortem pre-
frontal cortex samples of 14 FXS patients or carriers and
17 matched controls demonstrated that at low concen-
trations of unlabeled MPEPy, specifically bound [*H]
MPEPy was higher in prefrontal cortex samples from
the FXS group than the control group (Figure 1A). The
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binding curves best fit the one-site homologous model,
which was used to determine binding measures. The
mGIuR5 receptor density increased with marginal sig-
nificance (+16%; ¢ = 1.97, df = 29, P = 0.058) for FXS pa-
tients or carriers, as compared with control samples
(Figure 1B, Table 2). The dissociation constant did
not differ significantly between groups (-4%; Mann—
Whitney U = 92.0, P = 0.293). In addition, Western blot
analyses consistently revealed a stronger mGluR5 band
corresponding to a molecular mass of 150 kDa in FXS
patients or carriers (Figure 1C), with the average
mGluR5: total protein ratio higher and significant
(+32%; t = 2.07, df = 28, P = 0.048) for FXS patients or
carriers (mean = 1.32, standard deviation = 0.16) than
for control samples (mean = 1.0, standard deviation =
0.05; Figure 1D). When the four FXS carriers were ex-
cluded from the analysis, both mGIuR5 density and ex-
pression were higher (+17%; t = 1.88, df = 25, P = 0.071
and +25%; t = 1.51, df = 24, P = 0.147, respectively), but
only mGluR5 density was marginally significant between
EXS patients and control samples.

Binding assay and immunoblot data correlated positively
but were independent of age or postmortem interval

Pearson’s correlation analysis showed a significant posi-
tive correlation (r = 0.43; P = 0.018) between mGIluR5
density values and expression levels from corresponding
tissue samples (Figure 2). In addition, individually the
correlation was positive and similar but not significant
for both FXS patients or carriers (r = 0.42; P = 0.136)
and control (r = 0.41; P = 0.114) subjects. However, re-
ceptor density and mGIuR5 expression levels from both
EXS patients or carriers and control subjects did not sig-
nificantly correlate with age (mGIuR5 density: » = -0.36,
P = 0203 and r = 0.13, P = 0.609; mGIuR5 expression:
r=-0.35 P =0.216 and r = 0.17, P = 0.539 for FXS and
controls, respectively) or postmortem interval (mGluR5
density: r = 0.26, P = 0.395 and r = -0.30, P = 0.249;
mGlIuR5 expression: r = 0.23, P = 0.444 and r = 0.17,
P = 0.525 for FXS and controls, respectively), indicating
that mGIluR5 receptor density and expression level oc-
curred independently of age or postmortem interval.

Discussion

Using in-vitro radioligand binding assays and Western
blotting, we found a marginally significant increase in
mGIuR5 receptor density and a statistically significant
increase in mGIuR5 expression from the postmortem
prefrontal cortex of FXS patients or carriers, compared
with age- and sex-matched controls without neurological
disorders. Highly significant differences in mGIuR5
density could not be measured, mainly because of the
limited availability of postmortem human brain tissues
from FXS patients; nevertheless, the results raise the
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Figure 1 mGIuR5 receptor density and expression in prefrontal cortex of FXS individuals and healthy controls. (A) Binding curves from
homologous competition binding of 048 nM of PHIMPEPy to membrane preparation from FXS and control subject samples at concentrations of unlabeled
MPEPy ranging from 0.1 nM to 1 uM. Individual binding curves were obtained from the average of triplicate measurements for each unlabeled ligand
concentration. Data represent mean + standard error in the mean from 14 FXS patients or carriers (FX) and 17 healthy controls (HO). At low concentration of
unlabeled ligand, specific binding was higher for FXS than control samples. (B) Results of unpaired t-test to compare the two groups. mGIUR5 density
tended to be higher (+16%; P = 0.058) in FXS patients than in the control group. Data represent mean + standard deviation. Solid triangles (A) in the
FX group indicate the location of three FXS carriers; semisolid triangles (a) indicate the location of a carrier with FXTAS. (C) Representative immunoblot
for mGIuR5. The mGIuR5 band intensity was stronger for the FXS than control subject. Total protein stain of the same lanes confirmed equal-protein
loading. (D) Average mGIURS: total protein ratio normalized to control subjects. The ratio was high and marginally significant (+32%;

P = 0.048) for the FXS group compared with controls. Data represent mean =+ standard deviation. Solid triangles (A) in the FX group indicate the
location of three FXS carriers; semisolid triangles () indicate the location of a carrier with FXTAS.
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important question of whether mGIluR5 density is indeed
increased in the brains of individuals with FXS. While
numerous preclinical studies have linked increased
mGluR5 receptor signaling to various syndromic features
of FXS [6,7], this study is the first to measure mGIluR5 re-
ceptor density or expression levels directly in the human
brain of individuals with FXS or carriers. It is important to
note, however, that several reports have described changes

Table 2 Binding parameters from homologous
competition binding assays

Binding parameters Healthy Fragile X

(n=172 (n=14)° %change P
Receptor density 1410 £ 421 1683 £ 372 16 0.058
(fmol/mg protein)
Dissociation constant (nM) 106 +£ 40 102+ 16 -4 0.293°
Binding potential (receptor 1445 17+4 17 0.092

density/dissociation constant)

Values represent mean =+ standard deviation; °P value determined from
nonparametric Mann-Whitney test.

in mGIuR5 expression in patients with autism or in FXS
model mice [13-15].

Notably, FXS is the most common single-gene cause
of autism, accounting for 2 to 6% of all cases of autism,
and numerous studies suggest that similar sets of pro-
teins are dysregulated in both autism and FXS, including
mGluR5 [14,15]. For instance, Fatemi and colleagues
[13] recently reported a statistically significant increase
in mGIuR5 protein levels in postmortem tissue samples
from the superior frontal cortex of autistic children, a
finding that was not significant in autistic adults. Inter-
estingly, the same study also found significantly lower
levels of FMRP in autistic adults, despite the fact that no
records indicated that any of the individuals were tested
for or diagnosed with FXS. Considering that autism and
FXS are intertwined at the molecular level [15], the find-
ings of the autism study are in agreement with the sig-
nificantly increased mGIuR5 expression observed in the
present study in human prefrontal cortex of individuals
with FXS.
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Figure 2 Correlation between mGIuR5 density and expression
in prefrontal cortex of FXS individuals and healthy controls.
mGlur5 density by binding assay and expression by Western blotting
positively correlated with a Pearson r = 043 and P = 0.018. Healthy
controls and FXS full mutations are shown by open (o) and closed
circles (@) respectively. The three FXS carriers and one carrier with FXTAS
are shown by solid (A) and semisolid (a) triangles, respectively. The
regression line was determined using linear regression.

Reports of mGIuR5 expression levels in brain samples
from animal models of FXS are limited. Giuffrida and col-
leagues [16] recently found reduced mGIuR5 expression
in the detergent insoluble fraction of synaptic plasma
membranes isolated from forebrains of Fmrl knockout
mice compared with wild-type mice; however, the mRNA
and total mGIuR5 protein expression in total membrane
protein preparation were comparable between the two
mouse groups. The study attributed the altered mGIuR5
distribution to a complex interaction with Homer scaffold-
ing proteins. Another study found that mGIuR5 levels
were significantly reduced in the lateral geniculate nucleus
of Fmrl KO mice [17]. In the Fmrl KO hippocampus,
however, Western blot analysis revealed no difference in
mGIuR5 protein expression [8]. In contrast to these re-
ports, our results indicated significantly elevated expres-
sion of mGIuR5 in human prefrontal cortex samples of
EXS patients or carriers compared with healthy controls.
This discrepancy might be due to several key factors, in-
cluding differences between species, between the brain re-
gions studied, and between experimental procedures.

Presently, we can only speculate about the mecha-
nisms that might explain the increased mGIuR5 levels
observed in prefrontal cortex of FXS patients or carriers.
The absence of FMRP in FXS has been implicated for
both decreases and increases of different mRNA pools,
owing to translational repression or activation of diverse
mRNAs [5]. Although FMRP is not believed to be dir-
ectly associated with Grm5 mRNA, its association with
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other mRNAs may indirectly upregulate mGIluR5 levels
[18]. However, overexpression of mGIuR5 secondary to
absence of FMRP may lead to reduced 2-amino-3-(5-
methyl-3-oxo0-1,2- oxazol-4-yl)propanoic acid/N-methyl-
D-aspartate receptors as well as alterations in several
other signaling molecules; thus, FXS is currently consid-
ered a disease of dysregulated neuronal signaling [5].

Preclinical studies in FXS model mice suggest that
synaptic protein synthesis is dysregulated by hypersensi-
tivity to mGIuR5 signaling in FXS. Indeed, reducing
mGluR5 signaling by genetic knockdown or by adminis-
tering mGIuR5 negative allosteric modulators, such as
MPEP, improved cognitive and behavioral measures in a
mouse model of FXS [8,9]. Negative allosteric modula-
tors of mGIuR5 are presently being considered as poten-
tial treatments for FXS. In a pilot, open-label, single-
dose, Phase I study with fenobam, a negative allosteric
modulator of mGluR5 comparable to MPEP, 9 of 12 sub-
jects exhibited calmed behavior within one hour of dos-
ing, and 6 of 12 subjects had improved prepulse
inhibition [19]. Another trial administered AFQ056, an
mGluR5 negative allosteric modulator, for several weeks.
Although the overall therapeutic efficacy in FXS was
negative, a post-hoc analysis found significant therapeutic
efficacy in 7 patients who had full FMRI promoter
methylation, but no response in 18 patients with partial
promoter methylation [5,20]. Full methylation would be
expected to cause complete silencing of the FMRI gene
with minimal expression of FMRP (comparable to the
mouse KO model), whereas partial methylation would
be associated with variable FMRP levels; this could per-
haps affect the degree of mGIuR5 hyperactivation and,
thus, treatment response. Future treatment trials are
likely to prospectively separate patients with and without
hypermethylation of the FMRI gene.

This study was associated with several limitations.
First, the increased mGluR5 binding and expression ob-
served in human prefrontal cortex samples from individ-
uals with FXS patients or carriers might not reflect
actual disease status; instead, it could result from treat-
ment with antipsychotic medications. FXS patients are
commonly treated with antipsychotic drugs in childhood
and early adulthood, though usually not in late adult-
hood [21]. Medication status, which might have helped
elucidate this issue, was not available for most of these
tissue samples. Nevertheless, one study of rats chronic-
ally treated with the antipsychotic drugs haloperidol or
risperidone found that mGluR5 expression in the frontal
cortex was not altered, although significant changes were
observed in subcortical regions, such as the caudate nu-
cleus [22]. Second, tissue samples were only obtained
from white male subjects. Thus, the presence of any po-
tential sex-related or ethnic variation in mGIuR5 binding
or expression cannot be ruled out. The mutation
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responsible for FXS is known to affect men and women
at equal rates, but owing to lyonization or X chromo-
some inactivation, FMRP levels are higher in women,
with commensurately fewer and less severe physical,
cognitive, and behavioral phenotypes [1]. Third, most
tissue samples were from full mutation cases of FXS;
only four samples were from FXS carriers. When FXS
carrier samples were excluded from the analysis, both
mGIuR5 density and expression were higher, but only
mGluR5 density was marginally significant between FXS
and control samples. Unlike FXS patients with full muta-
tion, premutation carriers are known to express low
levels of functional FMRP. However, the carriers are
known to have increased transcription of FMR1 mRNA,
causing RNA toxicity by sequestering several proteins to
form intracellular inclusion bodies [2]. These inclusion
bodies have been found to contain several RNA-binding
proteins, such as hnRNPA2/B1, CUGBP1 and Sam68
[23,24]. Currently, it is not known whether RNA toxicity
in carriers is associated with sequestration of receptor
protein, such as mGluR5. Thus, the current finding of
mGIluR5 density or expression warrants further study in
a greater number of subjects who are only FXS full mu-
tation or FXS carriers. Furthermore, for most samples,
neither information on the number of CGG repeats nor
the methylation status in the FMRI gene was available.
The availability of this information would have allowed
us to assess the correlation between methylation or
CGG repeats and mGlIuR5 binding or expression, given
that epigenetic modification of the FMRI gene has been
implicated in differential therapeutic response to
mGIuR5 antagonists in individuals with FXS [20]. Fi-
nally, owing to the limited availability of tissue samples,
we were only able to evaluate mGIluR5 measures in the
prefrontal cortex of humans; other subcortical regions
known to contribute to the various cognitive and psy-
chomotor effects observed in FXS (for example, hippo-
campus, amygdala, and cerebellum) might have yielded
different mGluR5 measures.

Despite these limitations, the marginally increased
mGluR5 receptor density and expression observed in
this study in individuals with FXS provide a strong ra-
tionale for measuring mGIuR5 in living patients using
positron emission tomography (PET) [25,26]. Such stud-
ies could address many questions raised in the postmor-
tem study. First, PET could determine whether increased
mGIuR5 binding is present in live subjects and in all
brain areas, including the prefrontal cortex. However,
PET typically does not separately measure receptor
density (Bna,) and affinity (1/Kp). Instead, PET uses low
tracer doses of the radioligand, which measures the
product of these two variables, called the binding poten-
tial (BP = B./Kp). In our postmortem study, both BP
and B, were increased (16% and 17%, respectively)
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with marginal statistical significance (P = 0.058 and
0.092, respectively) for FXS patients compared with con-
trols (Table 2). Even after excluding four FXS carriers,
both BP and B,,., were increased (17% and 19%, respect-
ively) with marginal statistical significance (P = 0.071
and 0.094, respectively) for FXS patients compared with
controls. Because PET can only measure BP, based on
80% power and two-tailed P < 0.05, the required sample
size for PET to detect a significant elevation in BP in the
prefrontal cortex of FXS patients would be approxi-
mately 45 subjects. Second, the records from the post-
mortem samples contained inadequate information
about prior drug treatment, which may have upregulated
mGluR5. By selecting live, unmedicated subjects, PET
imaging can more directly assess the possible confound
of concomitant medications. Third, baseline mGluR5
levels could be correlated to any response to treatment
with mGIluR5 negative allosteric modulators. For ex-
ample, would those subjects with the highest elevation
of mGIluR5 have the greatest response to this antagonist
treatment?

Conclusions

This study was the first to identify upregulation of
mGluR5 density and expression in the prefrontal cortex
of FXS patients or carriers compared to an age- and sex-
matched control group. This is consistent with several
studies in FXS model mice that postulate that the syn-
dromic features of FXS are caused by an upregulated
mGluR5 signaling pathway. Although the sample size
was relatively small and the results could be secondary
to prior medication treatment, these initial findings pro-
vide strong rationale for measuring mGIuR5 in live pa-
tients using PET. Such in-vivo studies could measure
mGluR5 in all brain regions; the results could also be
correlated with treatment response to mGIluR5 negative
allosteric modulators.
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